
SQL Queries on Data Streams
Lasair Cycle-1 Technology Review

18 March 2020

Where does this fit in?

Needed for:
• Real-time push notification
• Custom event streams

Also a way of implementing:
• Watch lists
• User queries

Technology Options

• KSQL
• Temporary MySQL database
• Anything else we should be thinking about?

• Probably not:
• Apache Drill (not really focused on stream processing)
• Spark Structured Streaming (too different, too much work for too little gain)

Typical operation – filtering a stream
Kafka KSQL server

KSQL Query

KSQL client

Example – describe the data source

CREATE STREAM teststream (
objectId VARCHAR,
ramean DOUBLE,
decmean DOUBLE,
mjdmin DOUBLE,
mjdmax DOUBLE,
magrmin DOUBLE,
latestrmag DOUBLE,
classification VARCHAR,
score VARCHAR)

WITH (
kafka_topic='2SN-likecandidates’,
value_format='JSON');

Example – create a new stream/topic

CREATE STREAM sn_test_stream
AS SELECT * FROM teststream
WHERE classification='SN’

AND ramean > 215 AND ramean < 220
AND decmean > 75 AND decmean < 80

EMIT CHANGES;

Example – prove it did something
ksql> SELECT * FROM sn_test_stream;

+------------------+------------------+------------------+------------------+------------------+--------
----------+------------------+------------------+------------------+------------------+-----------------
-+

|ROWTIME |ROWKEY |OBJECTID |RAMEAN |DECMEAN |MJDMIN
|MJDMAX |MAGRMIN |LATESTRMAG |CLASSIFICATION |SCORE

|

+------------------+------------------+------------------+------------------+------------------+--------
----------+------------------+------------------+------------------+------------------+-----------------
-+

|1579434266420 |null |ZTF20aadcdzj |219.283945995 |79.94889376 |58850.53
703700006 |58867.45336809987 |18.892 |18.9792 |SN |Not Near PS1 star
|

|1579435142352 |null |ZTF20aadcdzj |219.28394712380955|79.9488929952381 |58850.53
703700006 |58867.48990740022 |18.892 |19.0336 |SN |Not Near PS1 star
|

|1579803073043 |null |ZTF20aadcdzj |219.28392438260872|79.94889672173913
|58850.53703700006 |58871.5284258998 |18.892 |19.1958 |SN |Not Near
PS1 star |

|1579874718652 |null |ZTF20aadcdzj |219.28391969166668|79.94889701666666
|58850.53703700006 |58872.56950230012 |18.892 |19.1625 |SN |Not Near
PS1 star |

^CQuery terminated

Example – from Kafka

~$ kafkacat -C -b lasair-dev.roe.ac.uk:9092 -t SN_TEST_STREAM -o beginning -c 1

{"OBJECTID":"ZTF18acbwaxk","RAMEAN":186.55033410652817,"DECMEAN":58.31412679436201,"
MJDMIN":58586.18103010021,"MJDMAX":58867.43031249987,"MAGRMIN":15.6157,"LATESTRMAG":
18.9523,"CLASSIFICATION":"SN","SCORE":"Not Near PS1 star"}

MySQL – Outline workflow

• Kafka consumer reads a (small) batch of alerts
• Writes them to a temporary (probably in memory) MySQL table
• Run the SQL query on the temporary table
• Kafka producer writes the query result (to a different topic)

MySQL vs KSQL

• MySQL syntax virtually identical to querying the object DB whereas
KSQL requires minor additions/changes
• But semantics still differ so some translation likely still required in any case

• KSQL avoids writing custom code (but not a lot anyway)
• KSQL deployment is slightly more complex (but not very)
• MySQL approach could potentially integrate with other components

of Lasair if it makes sense
• -> less load on the Kafka server and less network traffic

• MySQL requires some thought as to how to avoid data loss on errors

Concluding Thoughts

• We have two possible approaches to solving the problem, either of
which should work
• Which one we choose may depend on whether we (want to) end up

with a microservice architecture or not

