
Storage Technologies
Lasair Cycle-1 Technology Review

18 March 2020

Problem Statement

• Each alert comes with 3 cutout images that need to be stored in an
archive of some kind
• If we’re going to store light curves as single objects, then the

requirements are very similar to images
• Objective: identify the requirements, and evaluate candidate

technologies, for a blob store

Use Cases

• Used to derive requirements:

1. Keep up with the alert stream
2. Retrieve a few images for display on a web page
3. Retrieve 1M items for analysis in a notebook or externally
4. Large scale (>> 10^6) data mining (stretch goal)

Requirements

• Write 15KB images at a rate of at least 900 per second and preferably 2000
per second.
• Write 500KB light curves at a rate of at least 300 per second and preferably

700 per second.
• Store 150TB per year and scale to an ultimate size of around 1.5PB.
• Read arbitrary items with low latency (<1s).
• Read items at a rate of at least 300 items per second.
• Robust service with low downtime.
• Recovery in the event of a failure.
• Minimise staff effort required for both development and maintenance.

Types of technology

• Conventional filesystems
• Distributed filesystems
• Object stores
• Relational databases
• NoSQL databases

Long list of technologies

• 1a. Single filesystem directly attached to ingest node
• 1b. Dedicated storage node with multiple filesystems
• 1c. Cluster of storage nodes
• 2a. CephFS (+ Manila?)
• 2b. HDFS (or similar)
• 3a. Ceph + Swift
• 3b. Ceph/RADOS directly
• 3b. MinIO
• 4a. Store as records in the object database
• 4b. Store as blobs in a (separate?) MySQL database
• 5a. MongoDB
• 5b. Cassandra

Rejected entirely

• 1a. Single filesystem directly attached to ingest node
• Unlikely to meet requirements

• 1c. Cluster of storage nodes
• Reinventing the wheel

Deferred

• 1b. Dedicated storage node with multiple filesystems
• Could potentially meet requirements, but likely requires more effort for less benefit than a more

off-the-shelf solution.
• 2b. HDFS (or similar)

• Unlikely to make sense as a primary datastore and need for a secondary system for data mining
not clear.

• 3a. Ceph/RADOS + Swift
• Could look into as a possible performance enhancement of 3a.

• 3b.MinIO
• High, and potentially duplicated, effort.

• 5a. MongoDB
• High effort

• 5b. Cassandra
• High effort

Not evaluated

• 4a. Store as records in the object database
• Effectively the null option

• 4b. Store as blobs in a (separate?) MySQL database

Shortlisted options

• 2a. CephFS
• Likely to have some performance advantage over Swift at the cost of slightly

higher, but still reasonable, admin effort.

• 3a. Ceph/Swift based Object Store
• Looks like the lowest effort option. Should have excellent scalability and

robustness. Still need some experiments to ascertain what sort of
performance we can expect.

Experiments

• Set up test CephFS volume and Swift service on the OpenStack cluster
(thanks to Mark and Teng)
• Performance benchmarking of CephFS
• Two proof of concept demos for Swift
• Swift is functional, but haven’t had time to fully benchmark
• Not getting good performance on initial tests – need to investigtate

CephFS: Writing small files

0

500

1000

1500

2000

2500

3000

3500

0 2 4 6 8 10 12 14 16 18

Fi
le

s /
 s

Number of processes

Write performance, 15KB Files

Single di rectory all zeros Single di rectory random bytes Mult iple directories random bytes Mult iple directories random bytes over 4 VMs

CephFS: Writing larger files

0

500

1000

1500

2000

2500

3000

3500

0 2 4 6 8 10 12 14 16 18

Fi
le

s /
 s

Number of processes

Write performance, 500KB Files

Single di rectory all zeros Single di rectory random bytes Mult iple directories random bytes Mult iple directories random bytes over 4 VMs

CephFS: Overwriting

• Overwriting a file appears to be significantly slower than creating a
new file. Deleting the existing file first as a separate operation actually
appears to be quicker.

Write Overwrite Delete followed by write

Size (KB) N files Time (s) Files/s MB/s Time (s) Files/s MB/s Time (s) Files/s MB/s

15 33334 32.64 1021.24 15.31 171.37 194.51 2.91 75.37 442.26 6.63

100 5000 7.49 667.55 66.75 23.72 210.79 21.07 9.28 538.79 53.87

500 1000 1.79 558.65 279.32 5.19 192.67 96.33 2.24 446.42 223.21

CephFS: Reading small files

0

2000

4000

6000

8000

10000

12000

14000

0 10 20 30 40 50 60 70

Fi
le

s /
 s

Number of processes

Read performance, 15KB Files

All zeros Random bytes (in order written) Random bytes (random order) Random bytes (random order) over 4 VMs

CephFS: Reading larger files

0

500

1000

1500

2000

2500

3000

3500

0 10 20 30 40 50 60 70

Fi
le

s /
 s

Number of processes

Read performance, 500KB Files

All zeros Random bytes (in order written) Random bytes (random order) Random bytes (random order) over 4 VMs

CephFS: Development and Admin

• Minimal work would be required to modify existing code
• Need to ensure FS gets mounted when deploying VMs
• Requires that all VMs use the same UIDs and GIDs
• Requires that we deploy a separate HTTP interface
• Filesystem has a fixed size, but can be expanded when required
• Could consider using OpenStack Manila to provision/manage

Swift

• Two proof of concept demonstrations
• Query an archive of ZTF light curves stored as JSON files over an HTTP

interface
• Extract image files from a Kafka stream of alerts and writing them to a Swift

object store

• Have not yet been able to do performance benchmarking
• Appears to have issues with performance in initial tests

Swift: Development and Admin

• Some code modification required, but very easy as we already have
demo code from POC
• Uses Keystone for AAI so no requirement to deploy anything

additional
• No fixed size – well suited to unbounded data
• Built-in HTTP interface for read access.

Key Points

• Swift looks slightly better – if it can be made to perform adequately
• CephFS looks like a good alternative if not and does perform well

enough (although marginally so for upper write figure)
• Need lots of parallelism to get good throughput
• Some potential pitfalls to avoid

Open questions

• Lower figures for required performance based on 10 M alerts per
night; upper figures based on 50x ZTF. Which one is correct?
• Do we need to go back and look at MySQL?
• Do we agree that Swift is preferable?
• How much more effort should we spend on this?

