
11/03/2020 Parallel Ingestion and Workflow - Andy Lawrence - LSST:UK

https://lsst-uk.atlassian.net/wiki/spaces/~524382153/pages/965640230/Parallel+Ingestion+and+Workflow 1/4

/

Parallel Ingestion and Workflow

Created by Roy Williams

Last updated 2 minutes ago • Analytics

Andy Lawrence

Lasair Cycle-1 Technology Review Meeting Page
Share

One of the crucial technologies for handling a high bandwidth stream will be parallelism: 

multiple nodes sharing the work. The following describes a prototype built on the STFC 

cloud that consists of N+2 nodes

N ingestion nodes that read a kafka stream of alerts using a shared groupID, meaning 

that each alert is ingested by exactly one of the nodes.

One archive node that collects the data generated by the ingestion nodes

One head node that orchestrates the rest of the cluster.

The code used is here, and there are ansible playbooks to provision the nodes.

The thumbnail sketch of the Lasair-LSST architecture.

https://lsst-uk.atlassian.net/wiki/spaces/~524382153/overview
https://lsst-uk.atlassian.net/wiki/spaces/~524382153/pages/936706164/Lasair%2BCycle-1%2BTechnology%2BReview%2BMeeting%2BPage
https://lsst-uk.atlassian.net/wiki/spaces/~524382153/pages/edit-v2/965640230
https://lsst-uk.atlassian.net/wiki/people/557058:e5b7842d-5b84-4c0e-ab60-9bb195816a36?ref=confluence&src=profilecard
https://lsst-uk.atlassian.net/wiki/pages/diffpagesbyversion.action?pageId=965640230&selectedPageVersions=3&selectedPageVersions=4
https://lsst-uk.atlassian.net/plugins/servlet/ac/com.addonengine.analytics/com.addonengine.analytics__analytics-content-byline-item?page.id=965640230&space.key=%7E524382153&content.id=965640230&content.version=4&page.type=page&page.title=Parallel%20Ingestion%20and%20Workflow&space.id=936706050&content.type=page&page.version=4
https://lsst-uk.atlassian.net/wiki/pages/viewpageattachments.action?pageId=965640230&metadataLink=true
https://github.com/RoyWilliams/LasairTech/tree/master/database_tests/ingest
https://github.com/RoyWilliams/LasairTech/tree/master/database_tests/ansible


11/03/2020 Parallel Ingestion and Workflow - Andy Lawrence - LSST:UK

https://lsst-uk.atlassian.net/wiki/spaces/~524382153/pages/965640230/Parallel+Ingestion+and+Workflow 2/4

This is what it looks like as functional components. Everything labelled “work” can be 

handled by a farm of worker nodes, that use the services from nodes not labelled “work”.

The ingestion nodes and archive 

node are shown here. The nodes 

share the kafka stream of alerts, 

coming in from the left, and they 

build a database record 

corresponding to each alert, which 

they write to a cache, a node-local 

database. Thus all the nodes work 

in parallel with no serial 

bottleneck. Every so often – 10000 alerts or nothing more to read – the contents of the 

local databases are transferred to the archive node.

 

The next stage of the prototype is 

to treat binary data (images, 

perhaps also lightcurves) in the 

same way as the database 

records. The cache will be the 

local file storage, then when the 

data flow stops, transferring these 

to the blob store. 

 



11/03/2020 Parallel Ingestion and Workflow - Andy Lawrence - LSST:UK

https://lsst-uk.atlassian.net/wiki/spaces/~524382153/pages/965640230/Parallel+Ingestion+and+Workflow 3/4

A kafka producer can be added to 

each node. All the user-built 

queries will be available to each 

node, and all of them run against 

the alerts that the node has, and 

when the query is successful, the 

output matrixed together by a 

kafka producer node.

 

 

 

The context classifier (aka 

Sherlock) uses multi-TB databases 

to classify each alert by what is 

nearby in the sky. There will be a 

cache system, so that if the same 

requests is made again, then the 

saved information is sent 

immediately.

 

 

 



11/03/2020 Parallel Ingestion and Workflow - Andy Lawrence - LSST:UK

https://lsst-uk.atlassian.net/wiki/spaces/~524382153/pages/965640230/Parallel+Ingestion+and+Workflow 4/4

Like Be the first to like this

 

Here are all the moving parts of the system, an architecture that implements the required 

functionality. Services are set up and waiting, then each node starts consuming Kafka 

from the MIrrormaker cache. While 4 nodes are shown, it could be any number to achieve 

sufficient speed. Similarly with the sherlock cluster. Consumers can use the website to 

build complex filters, they can also use the Jupyter interface, consume a Kafka stream, or 

code against the Lasair API.

 

No labels


