
Copyright LSST:UK Consortium 2019

 The Lasair-ZTF Transient Broker

Phase	A	prototype	enabling	analysis	of	the	ZTF	
stream	

Submission date 10/6/2019

Version

Status Finished

Author(s) inc.
institutional affiliation

Roy Williams, University of Edinburgh
Ken Smith, Queen’s University Belfast

Reviewer(s)
Bob Mann, University of Edinburgh

Dissemination level

Public Public

Version	History	
Version Date Comments, Changes, Status Authors, contributors,

reviewers

0.1 04/04/2019 First version Roy Williams, Ken Smith

1.0 28/05/2019 Reviewed and revised Roy Williams, Ken Smith,
Bob Mann

1.1 10/06/2019 Reviewed and revised Roy Williams, Ken Smith,
Bob Mann

Project Acronym LUSC-A

Project Title UK Involvement in the Large Synoptic Survey Telescope

Document Number LUSC-A-08

LASAIR EVENT BROKER

2

Table	of	Contents	
VERSION HISTORY .. 1

1 EXECUTIVE SUMMARY ... 2

2 AN EVENT BROKER .. 3

3 PHASED DEVELOPMENT OF LASAIR ... 4

4 DESIGN OF LASAIR-ZTF .. 4

4.1 INGESTION .. 6
4.2 WEB AND SERVICE ASPECT .. 6

5 USER FUNCTIONALITY IN LASAIR-ZTF ... 6

5.1 STREAMS AND QUERIES.. 6
5.2 CONE SEARCH.. 9
5.3 COVERAGE .. 9
5.4 WATCHLISTS ... 10
5.5 SKYMAPS .. 11
5.6 INGESTION STATUS ... 12
5.7 JSON RESPONSES ... 12
5.8 JUPYTER ... 12

6 LESSONS LEARNED AND PHASE B DEVELOPMENT .. 12

7 GUIDE TO CODE ... 13

7.1 INGESTION .. 13
7.2 LASAIR WEBSITE ... 14

8 DATABASE SCHEMA ... 15

9 REFERENCES .. 15

1 Executive	Summary	
The Lasair broker in LSST Phase A is a prototype that ingests the ZTF sky survey [1] in
preparation for ingesting the LSST sky survey. ZTF and its infrastructure has been
designed for similarity with LSST, so infrastructure built, and lessons learned, in this
prototype are an excellent preparation for the full LSST transient stream, that will be 10
to 100 times as voluminous as ZTF. In this prototype, we have a nightly ingestion process
that has run for nearly a year without major failure, and we have released a public website
that is attracting attention from the UK and international astronomers.

The philosophy of Lasair development is to evolve “from working to working”, so that we
are starting with a broker for ZTF, developing its functionality on the basis of user
experience, with scalability testing in parallel. So, this document provides a snapshot of
the state of that development process at the end of Phase A and describes a broker
being used to study the ZTF alert stream. This is a technical report on the current state
of Lasair, not a user guide, and the user documentation is provided on the website itself.

LASAIR EVENT BROKER

3

2 An	Event	Broker	
LSST will discover large numbers of astrophysical transients, both photometric and
astrometric. Because they vary in time, exploitation of many classes of these events
requires rapid discovery and additional follow-up observations. LSST’s real-time
pipelines will identify such transients using image differencing and report them publically
within 60 seconds of the data being taken. These alert packets will contain information
about the most recent detection and also a lightcurve, cutout images, timeseries
features, and other information. Some science users will be able to use nothing but the
contents of a single LSST alert packet to make a rapid and informed decision about
whether the event is relevant to their scientific goals. LSST expects to produce up to
about 107 of these alerts nightly, producing about a terabyte per night. It will contain all
classes of astrophysical events, supernovae, variable stars, solar-system objects, and
new types of transient.

LSST will itself offer an alert filtering service that will apply user-supplied filters to the
alert stream. This so-called “mini broker” [11] will offer simple filtering of the stream that
operate only on single LSST packets, with no annotations or contextual information.
Users will only be able to get a few alerts from the mini broker – perhaps 20. There will
be no storage provided by LSST, and limited distribution formats and protocol.

Astronomers will also have access to “community brokers” [12] -- software systems not
built by the LSST project, that receive the full LSST alert stream and provide added data
to better select events of interest. Community brokers may add annotations and context
to the original packets, perhaps cross-matching the LSST stream to multi-wavelength
catalogues, joining LSST alerts with those from other surveys, running code to build
classifications of events, and/or offering user filters to concentrate the stream. Brokers
may also offer the ability to query past history of alerts, accounts with preferences,
favourite queries, favourite sources, and other enhancements over the mini-broker.

Individual scientists may receive alerts through one or more of these services. The large
volume of the alert stream and the finite bandwidth from the LSST Data Facility
necessitate a proposal process to select community brokers that will receive the full
stream.

We hope that the Lasair-ZTF broker, described herein, will become one of these
community brokers. In preparation, the LSST-UK team has built a prototype, using phase
A funding, to broker the ZTF[1] transient stream, that we call Lasair-ZTF. The objectives
are to gain experience, to build and interact with a user community, to and to experiment
with new technologies. In building Lasair-ZTF, we have adopted a user-centric strategy:
asking for contributions from the community, then promoting the best of those to the
system level, so they are available to all on the front page of Lasair. In this way, the most
useful and best of that built by the community is made available to the entire Lasair
community.

We expect to provide users with sophisticated features that go beyond the filtering of
individual events that the mini-broker provides. Geometric constraints, including cross-
matching with a set of “favourite” sources; querying the alert stream with both SQL and
User-Defined Functions; contextual information from a wide selection of catalogues and
image surveys; and a Jupyter interface that allows complex code to run against the
stream. These functionalities can also be deployed against historical data, so that users
can effectively develop filters for real-time alerts. Users will be given accounts, with
different resource allocations up to power user, with access to storage and computing
power, courtesy of the UK science grid IRIS.

LASAIR EVENT BROKER

4

3 Phased	development	of	Lasair	
in parallel with this working prototype for the ZTF stream, we are also conducting
scalability experiments with alternative technologies, some of which are likely to be
adopted in future versions of Lasair, so that we end up with a system that meets the
scalability requirements for the LSST stream. Users will still interact with the events by
providing filters based on sky geometry and SQL, but their use and scalability will evolve.
The geometric filter will include not just watchlists of sources, but also general sky areas.
The SQL SELECT filter will be not only for user-initiated queries (“click here to submit
query”), but also automatically to generate a substream of the original event stream, that
can be stored, disseminated, or used for alerting humans. Filters will be a combination
of geometry and SQL. Filters will be able to utilise simple code as UDFs (User Defined
Functions), and complex assessment of the event through annotations: searching
catalogues, light-curve analysis, etc. Queries will not run until the annotations they need
are available.

Finally, of course, all of this will be developed in a scalable way, using Apache Spark for
parallelism over a cluster of “shared nothing” nodes that partition the sky. We also expect
to replace the MySQL database with a more scalable data storage, but retain the SQL
language as far as possible, since many scientists are already familiar with it. Some
preliminary work on these future technologies has been done [13].

4 Design	of	Lasair-ZTF	
First we discuss in more detail the kinds of services that Lasair-ZTF has, and expects to
provide in the elaborated future version Lasair-LSST.

Spatial filters ask if the event is within a specified geometry (a subset of the celestial
sphere), and include 'skymap' queries that come from gravitational-wave alerts, where
the geometry is actually a probability density on the sky. They also include the 'multicone'
type of geometry that consists of a set of sources (a catalogue), each with a radius, also
called a watchlist. In the future, we expect to collaborate with the Virtual Observatory
stakeholders to allow easy creation and exchange of both geometric and multicone
filters.

Lasair also supports annotation of events, where new information is added to the event
to form an 'event portfolio'. We refer to 'new' events as those that come directly from the
LSST source, and 'rich' events as those that have a portfolio. Annotation can be created,
for example, by contextual search of massive catalogues, where nearby 2MASS or
PanSTARRS sources are found and associated with the event. Lasair also computes
statistics of the light curve or each object, such as minimum and maximum magnitude,
etc. Other annotations include user comments on objects, and crossmatches with the
Transient Name Server (TNS)[3].

In the future, we will encourage annotation from users: by running their code on the light
curve or stamp image, and adding a report packet to the original event. Codes for building
annotation will be run either in batch mode (for historical events), or in real-time mode,
as part of the ingestion pipeline. Some of the filters that decide the importance of events
will only need to run on new events, and some will need a combination of parts from the
portfolio.

When a filter is built using only the new event, it can run more quickly. In the Kafka
streaming architecture, the stream of new events can be replicated and thus scaled over
many processors, and complex queries executed in parallel. The new event contains rich
information, including the full light curve of the source associated with the event.

LASAIR EVENT BROKER

5

A future capability of Lasair will allow filters to run in real time, as part of the ingestion
pipeline, its output may result in sending an alert message to a user. Such alerts will take
many forms (text, VOEvent, GCN Notice, etc), and will be delivered in many ways (email,
SMS, Slack etc). Lasair is investigating different ways to make this variety possible for
users and manageable by the project.

Lasair offers a number of services already to give access to the event archives. Cone
search is a local spatial filter based on a single position and radius, and a watchlist filter
is one from a spatial filter that is the union of many cones. A filter can also be built from
an SQL SELECT query, so long the output is both time-ordered, and includes either a
new or rich object. Coverage service shows the sky where the survey has covered,
according to which dates and telescope filters have been used. The ingestion status
service shows current status of the ingestion of events from the telescope.

Lasair uses the Sherlock [4] system to give context to the candidates ingested from ZTF.
Given a position in the sky, Sherlock determines likely known objects that it belongs to.
A candidate in a galaxy is very likely to be a supernova, so the context information is
crucial. Users can query on the Sherlock context information to select their objects of
interest.

Lasair-ZTF uses a technology stack: Kafka, Django, MySQL, Jupyter.

Figure 1: Lasair-ZTF Architecture, May 2019: Five hosts drive Lasair, four are VMs
on one machine (lsstuk2), and the jupyter interface is on a different machine
(lsstuk3). This system has been reliably ingesting the ZTF stream for about a year.
Events arrive from a Kafka Producer to lsstuks2:lasair-head (top left), and go into a
relational database, with the image stamps in the file system (green). The Sherlock
code[4] has been developed at QUB for many years to evaluate local context and
infer event properties; it runs in the background on lsstuk2:lasair-node0 (top right).
Other Factory tasks are: converting FITS to Jpeg, building a coverage table to show
on the website, summary statistics of the light curve. The MySQL data base on
lsstuk2:lasair-db saves the candidates and objects, as well as data generated from
them (“portfolio”). Users can store their own information (yellow), including
"watchlists" of sources, saved SQL queries, and Jupyter notebooks. These run on
demand by the user, but cannot yet be put into the real-time pipeline. There are no
alerts being pushed, rather everything is through the web browser and services, and
Jupyter.

LASAIR EVENT BROKER

6

4.1 Ingestion	

The stream of transients is ingested from the ZTF survey from the University of
Washington in the USA, using the Kafka software, that is designed for high-throughput
streaming applications. The stream consists of “candidates”, each referring to a detection
in the sky of a source that is different from the reference images, that were taken in early
2017. Each candidate has numerous attributes [9], as well as FITS images of the
detections. Each candidate is immediately inserted into the MySQL database, and the
image files into the file system. As of May 2019, the database has 35 million such, and
each clear night delivers another ~200,000.

Data is fetched from ZTF in batches of 50,000, after which the streaming stops, followed
by further ingestion processes, such as converting the image files to Jpeg for web
display, collecting together all detections of the same astrophysical object, and
characterising that light curve, and updating the coverage information for the survey. The
Sherlock software finds astronomical context from numerous catalogues. We expect to
add other such “annotations” in the future. After a 10-minute wait, the system polls for
new candidates, and the cycle starts again.

4.2 Web	and	service	aspect	

Lasair-ZTF is a combination of Kafka ingestion, a web server, and a Jupyter server. The
web aspect is built with Django, a web-application framework where each URL drives
python code; the database is seen by this code as a persistent object store, and results
from the code are passed to templates that generate the output web pages. Users can
sign up with a self-service system, that allows them to save their queries, to add
comments to interesting objects, and to save watchlists of interesting sources. Users can
define an arbitrary SQL SELECT query, which is then modified with a timeout (max
execution time directive), and a limit of 1000 returned records. Once this first page of
1000 is delivered, a ‘next page’ button fetches the next group.

The Lasair web server makes good use of AladinLite[7], that provides a zoomable sky
background built from a wide selection of image and catalog products, including
PanSTARRS and Gaia. This display is used to show the neighbourhood of an specified
object, to show coverage of the ZTF survey, and to show gravitational-wave skymaps.
The Lasair-ZTF web also makes use of Plotly[14] for zoomable light curves, and
Bootstrap styling to make the web pages useful for a wide variety of devices.

5 User	functionality	in	Lasair-ZTF	
Lasair is a website, usable by humans and by machines, and it is a Jupyter notebook
hub. The services offered are listed in the left margin of

https://lasair.roe.ac.uk
and they are described below. There is a linked effort to develop a Jupyter notebook
interface to the transient stream and its products.

5.1 Streams	and	Queries	

This page is a SQL-builder for the ZTF database, and is in two parts. The primary page
(“Lasair Streams”) lets a user run some SQL without actually seeing it -- the streams
page. The SQL itself is on a secondary page, (“click here to build your own query”), and
On the streams page is a big box where the user can type in raw SQL. Alternatively, they
can click on a query below, which fills the big box with the corresponding SQL. There are
three kinds of saved queries:

LASAIR EVENT BROKER

7

• My queries
• Contributed (public) queries
• Lasair system queries

The first is presented as a form interface, so that the owner can change the query, its
name, and its description. There is a check box labelled “public” meaning that others can
see your query. The Lasair system query is a subclass of Public query, and is shown on
the streams page. Currently these favoured streams are:

Name Description

SN-like candidates in
last 14 days

SN-like candidates (Sherlock classifications SN, NT and
orphans), time limit adjustable (just adjust the number 14).
Rejects Pan-STARRS star matches

All nuclear transients
and TDE candidates

Near core of inactive catalogued galaxies (within 1"), flags
Pan-STARRS stellar matches to let user judge star/galaxy
separation. Objects discovered in last 30 days.

TNS crossmatch This query finds all Lasair objects that are in the Transient
Name Server[3], meaning they have a comment that includes
the string 'TNS'. The most recent are first.

A user-built SQL query must begin with SELECT, so that it can’t delete or alter the data,
and a LIMIT 1000 is added to the query, to manage the size of the output. There is also
a timeout applied to the query. The query is built from the following tables:

• Candidates: the detections ingested from ZTF, the same schema [6]. The
primary key is candid.

o Noncandidates: a table of nondetections at the places where there have
been detections

• Objects: A collection of detections, all at the same place in the sky, within 1.5”,
the primary key is objectID.

• Sherlock_crossmatches: Objects from published catalogues that are close to a
given object.

• Sherlock_classifications: The classifications of nearby (and coincident) objects
from published catalogs The classification can be AGN, BS, CV, NT, ORPHAN,
SN, VS, as well as UNCLEAR, or NULL.

• Comments: Users comments on objects, includes Lasair Bot who comments if
the object is in the Transient Names Server [3]

Once a query is executed, the selected objects can be viewed in detail, or fetched in a
machine-readable form (json).

LASAIR EVENT BROKER

8

Figure2 : Rich Object Information: The light curve of each object is shown in two
filters (g and r), with both detections and non-detections, in this case for supernova
2018jny / ZTF18acsovsw. Comments can be added by logged-in users, such as this
one with the link to the IAU name of the supernova. The Sherlock classification
system has provided information about the host galaxy. Aladin Lite[7] provides both
images and catalogue sources: here we see Pan-STARRS image of the host galaxy
with sources from Pan-STARRS and Gaia DR2.

LASAIR EVENT BROKER

9

Figure3 : Detection Images: The object page has links to detailed information about
each observation that makes up the light curve, with images, in this case for
ZTF18acsovsw. We see the brightening of 2018jny.

5.2 Cone	Search	

The cone search facility is available from every Lasair page in the top bar. An expression
of right ascension and declination in many forms can be entered here, in decimal degrees
or sexagesimal, with many of the usual delimiters. In this way, a sky position can be
copy/pasted directly from some other place. An optional cone radius can also be added
last, as a number of arcseconds. Alternatively an objectID (eg ZTF18aaalymq), or a
comma-separated sequence of such can be entered.

5.3 Coverage	

ZTF uses a fixed set of fields for its observations, laid out in a RA/Dec grid on the sky.
The coverage page of Lasair shows which of those fields have been covered by the ZTF
survey, in a given date range, with red squares for r-band observations and green
squares for g-band. The AladinLite [7] image can be manipulated to show more detail
and more quantitative information. Below the image, coverage is given in text form, being

LASAIR EVENT BROKER

10

the number of candidates returned from each of the fields.

Figure 4: ZTF coverage.

5.4 Watchlists	

A watchlist is a set of named points in the sky, with a radius in arcseconds. Users can
input a watchlist and save it, and they can run a crossmatch between their watchlist and
the ZTF database. For example, if an astronomer is interested in “BL Lac candidates for
TeV observations” [8], they can build a watchlist with these, to look for optical transients
from ZTF that come from these special galaxies. Watchlists can be public or private. The
result of the crossmatch is a table with the left columns being the watchlist sources, and
the right columns the corresponding ZTF object, with the number of candidates shown,
and the Sherlock classification.

Each watchlist also has a checkbox “active”, which currently has no effect. In the future,
however, we expect this to mean that the crossmatch is run as soon as possible after
candidates are ingested, with alerts sent to the user to say that a transient has appeared
on one of the watched sources.

LASAIR EVENT BROKER

11

5.5 Skymaps	

Figure 5: Lasair is connected to the LIGO-Virgo gravitational wave observatories,
and receives and processes fresh observations within minutes. The result is a page
such as that shown here, which corresponds to the “golden event’ called GW170817.
The contours of probability are shown for the skymap, in 9 levels from 10%, the
innermost contour, to 90%, the outermost. Controls above allow the coverage of the
ZTF survey to be shown, as well as recent ZTF transients that may be the
counterpert of the GW observation. The yellow squares in the image surround likely
galaxies where the counterpart migh be found, where the area of the square is
proportional to the probability it contains the counterpart. These probabilities are

LASAIR EVENT BROKER

12

listed in text form below. In the case of GW170817, the counterpart was found in
NGC 4993 (white arrow), which is shown with a ~10% chance (black arrow).

5.6 Ingestion	Status	

There are three processes running frequently on the Lasair ingestion machine:

• Kafka ingestion from ZTF
• Crossmatch with Transient Name Server
• LIGO-Virgo skymap ingestion

Each of these produces a log file, that can be seen from the Lasair Ingestion Status
page. The first of these shows the time of the most recent update, the number of minutes
since then, the number of alerts that ZTF is reporting for the day, and the number that
Lasair has ingested – which should be quite close.

5.7 JSON	responses	

Several of the web pages described above can return a JSON response, made for
machine use, in place of the HTML/JS that is made for human understanding. These are:

• /conesearch/: see check box for JSON output.
• /objlist/: when submitting an SQL query, see check box for JSON output
• /object/<objectId>: for viewing a specific object, there is a JSON output
• /skymap/<skymapId>: for viewing a specific skymap there is a JSON version.

5.8 Jupyter	

There is also a prototype Jupyterhub installation (on lsstuk3) that can make a connection
to the Lasair database, using the mysql.connector package. There was a meeting of
UK astronomers [ref] interested in using Lasair, and many built Jupyter notebooks. There
are many examples at https://lasair.roe.ac.uk/jupyter.

6 Lessons	learned	and	Phase	B	development	
Lasair-ZTF has been a success, providing astronomers with meaningful access to the
ZTF transients since May 2018, with very little downtime. It has relied on Kafka for
ingestion, MySQL for database storage, Apache/Django for web aspect, and provided a
Jupyter aspect that can see the database. Users provide geometric criteria in the form
of watchlists, and SQL SELECT queries to pick interesting events, that can be followed
up in detail via Jupyter.

In Phase B we expect to achieve the following:

• Allowing users to create more complex queries, combining watchlist, geometry,
and SQL

• Addition of more annotations in addition to Sherlock, for example a machine-
learning code to classify light curves.

• Converting SQL SELECT queries into filters that generate substreams of
interesting events.

• Running these filters along with event ingestion to generate streams in real time.
In particular, a filter will only run when the annotations it needs have been
computed.

• Combining all the above to build a supernova stream that ‘mostly’ contains
supernovae, and contains ‘most’ supernovae that ZTF has seen.

LASAIR EVENT BROKER

13

• Delivering event substreams to both end-users and to downstream processing
facilities.

• Experimenting with LSST commissioning data and porting from ZTF to LSST.
• Building parallel and multi-threaded systems, together with scaling experiments

to increase and optimise the flow of data through the many moving parts of Lasair.

7 Guide	to	Code	
The following is a guide to the code that drives Lasair. The whole code is public and
available from a github tag dated 28 May 2019

https://github.com/lsst-uk/lasair/tree/lasair-ztf
7.1 	Ingestion	

• alert_stream_ztf:
o bin/ingestStream.py: the Kafka consumer.
o alert_stream_ztf/common

§ date_nid.py: converts night-id integer to/from normal dates
§ htm: the Hierarchical Triangular mesh code for crossmatches is

used in the watchlists, the cone search, and the TNS crossmatch.
§ run_crossmatch.py: Code that runs when a user runs the

watchlist crossmatch from the web page
§ run_tns_crossmatch.py: Code to crossmatch TNS with ZTF
§ settings.py: Secrets that are not in the github repository.

Database passwords etc.
o python/lsst/alert/stream

§ alertConsumer.py: Imported by ingestStream.py, this is the
Kafka consumer implemented with Confluent Kafka.

o ztf_ingest.py: The code that runs every 10 minutes to poll Kafka, get the
latest candidates, then run the Factory tasks in post_ingest.

o ztf_ingest_log.py: Wrapper around ztf_ingest.py that runs and waits,
runs and waits. Also puts all output from ztf_ingest.py into a log file.

• post_ingest:
o check_status.py: Builds the status summary that is visible on the

ingestion page.
o coverage.py: Builds the coverage table that is used by the coverage

page.
o get_number_candidates.py: Computes the number of candidates in the

database so that it can be visible on the “about” page.
o jpg_stamps.py: Looks for triples of FITS stamps that do not have a Jpeg

version, and makes the Jpeg version, for the object page.
o poll_tns.py: Fetches all the transients from the Transient Name Server

(https://wis-tns.weizmann.ac.il/), and puts them in a database table.
o update_objects.py: Rebuilds summary statistics for each object. Once a

candidate is added to an object, the object becomes stale, and this code
freshens the objects.

• skymap:
o lvc_gcn_listener.py: Fetches LIGO-Virgo skymaps immediately it is

published.
o skymapInfo.py: Builds a JSON version of the skymap file, with contour

lines, likely galaxies, etc.
o galaxyCatalog.py: Part of skymapInfo.py.

LASAIR EVENT BROKER

14

7.2 Lasair	website	

• ./lasair-webapp/lasair/lasair:
o candidates.py: Showing a specific candidate from the database
o comments.py: User comments on objects
o models.py: Python classes for the Django models of the database tables.
o myqueries.py: Stored queries and query execution.
o objects.py: Making a page for a given object.
o services.py: Services called by AJAX from Javascript, including

coverage.
o settings.py: Django settings, includes, secrets, not in github.
o skymap.py: Building a page about a LIGO-Virgo skymap.
o urls.py: The Django URLs and which code runs from which URL.
o views.py: Miscellaneous web functions.
o watchlists.py: Dealing with Watchlists.

• ./lasair-webapp/lasair/lasair/static
o admin, images, CSS, static content, includes AladinLite, JQuery,

Bootstrap, Plotly.
• ./lasair-webapp/lasair/lasair/static/js

o coverage.js: Builds the red and green rectangles on the sky for the
coverage page

o lc.js and lc_apparent.js: Build the light curve display on the object page,
one for difference magnitudes, the other for apparent magnitudes.

o skymap.js: Build contours, galaxies, ZTF coverage, and ZTF transients
for the skymap page

o surveys.js: List of HiPS surveys to include for the AladinLite pages.
• ./lasair-webapp/lasair/lasair/templates

o about.html: /about page
o base.html: The heading and left margin, included in all other templates
o cand.html: Single candidate page
o candlist.html: List of candidates page
o conesearch.html: Conesearch page
o contact.html: Contact page
o coverage.html: Coverage page
o error.html: Error page
o index.html: Front page of Lasair
o jupyter.html; Jupyter page
o new_comment.html: To add a new comment to an object
o new_myquery.html: To add a new stored query
o objlist.html: Showing the result of a user-initiated SQL query
o objlistquery.html: Inviting the user to make a SQL query
o release.html: Release notes
o schema.html: Tables and attributes to go into user-initiated SQL queries
o show_myquery.html: Showing a specific stored query
o show_object.html: Showing an object
o show_skymap.html: Showing a LIGO-Virgo Skymap
o show_watchlist.html: Showing a watchlist
o signup.html: Signing up for an account
o skymap.html; List of available skymaps
o status.html: Ingestion status page
o streams.html: Showing special queries without any SQL
o watchlists_home.html: Watchlists page

• ./lasair-webapp/lasair/lasair/templates/registration: Everything in this
directory is about the self-signup procedure, logging in and out, forgot my
password, etc.

LASAIR EVENT BROKER

15

8 Database	schema	

9 References	
[1] Zwicky Transient Facility, https://www.ztf.caltech.edu/

[2] Lasair Transient Broker, https://lasair.roe.ac.uk/

[3] Transient Name Server: https://wis-tns.weizmann.ac.il/

[4] Sherlock: A python package with command-line tools for contextually classifying
variable/transient astronomical sources.
https://qub-sherlock.readthedocs.io/en/stable/

[5] Lasair Astronomer’s Meeting 9th October 2018
https://lsst-
uk.atlassian.net/wiki/spaces/LUSCSWG/pages/583237641/LASAIR+astronomer+m
eeting+9th+October+2018

[6] ZTF Avro Schemas
https://zwickytransientfacility.github.io/ztf-avro-alert/schema.html

[7] AladinLite interface: https://aladin.u-strasbg.fr/AladinLite/

[8] F. Massaro et al, BL Lac Candidates for TeV Observations
https://ui.adsabs.harvard.edu/?#abs/2013ApJS..207...16M

[9] ZTF schema
https://zwickytransientfacility.github.io/ztf-avro-alert/schema.html

[10] Github tage for Lasair-ZTF
https://github.com/lsst-uk/lasair/tree/lasair-ztf

���������	��
��
����
������������������������������ ��!����"��#

���"��

����������

��$�%!&��'(�)*(���+#

$���,-./�

"���&�0���#

 ���.&1&�0�
�#

��""��������/,(0

 ��""��"��������'(�)*(��
22#

 ������ ��'(�)*(��
22#

 ���������&�0���#

%������.&1&�0�
�#

�3��"" �3�'(�)*(��
22#

!�����.&1&�0�
�#

����&�0���#

�%���&�0���#

"�����&�0���#

4 �3��/,(0

5 �3��/,(0

����,-./�

��%���,-./�

��� 3"��/,(0

3���� 3"��/,(0

	������666

	���
��

��������

%�����!7���&�0���#

83���&�0���#

��$�%!&��'(�)*(���+#

%��!��!�'(�)*(�����+#

!����0&��90(�:

	���
��

��
�����

"���&�0���#

����&�0���#

����/,(0

��%���/,(0

��.&1&�0�
�#

"�����&�0���#

	���
��

��������������

���&�0���#

����,-./�

��%���,-./�

!�37�����'(�)*(����#

!�37 ��"�4�'(�)*(����#

��3%7�����/,(0

��3%7���7"��!���'(�)*(��2�#

!5 ��'(�)*(��
�#

;��/,(0

<�3!;��/,(0

<�3!7�����'(�)*(��2�
#

��3%7��3!�8���!3�'(�)*(��2�
#

 8���%�0&�=&�0��#

3������'(�)*(��2�#

�33�%��!��7���8 3�'(�)*(��2�
#

%��33�"5���7���8 3�'(�)*(��2�
#

��3%�>�����7���8 3�'(�)*(��2�
#

%��337��3!�8���!�'(�)*(��2�
#

!�3���&�0���#

��3%7��!7�����'(�)*(��2�
#

������666

	���
��

������

"�����&�0���#

����/,(0

��%���/,(0

�������/,(0

���!��/,(0

	���
��

���������

�?7���&�0���#

83���&�0���#

�����'(�)*(��
2+#

��3%�� !����'(�)*(�����+#

?8��5�'(�)*(�����+#

 8���%�0&�=&�0��#

	���
��

�������������

��$�%!&��'(�)*(���+#

$���,-./�

"���&�0���#

��""��������/,(0

	���
��

�������

 �����5&��&�0���#

��$�%!&��'(�)*(���+#

3!����0&�=&�0��#

�%����&�0���#

��������,-./�

��3!���,-./�

��%������,-./�

��%3!���,-./�

���������/,(0

������4��/,(0

������������/,(0

����������/,(0

���������/,(0

������4��/,(0

������������/,(0

����������/,(0

��!�3!������/,(0

��!�3!������/,(0

$������,-./�

$���4��,-./�

������666

	���
��

������������������������

!���3���!7��$�%!7���&�0���#

%��33�"�%�!����'(�)*(���2#

����!�!����0�@0

38����5�'(�)*(��2�#

��3��!%<)�����!�'(�)*(��2��#

��!�/�3!����"�����(0�0&��

��!�)���!����(0�0&��

8 ��!���'(�)*(���2#

83���'(�)*(��	�#

%�����!��!���(0�0&��

3� ���!���(�%3�%��,-./�

	���
��

���������������������

!���3���!7��$�%!7���&�0���#

%�!����8�7��$�%!7���'(�)*(����#

%�!����8�7!����7���9�(//&�0�2#

!���3���!7��$�%!7����,-./�

���!<9� ���!���(�%3�%��,-./�

��3!9� ���!���(�%3�%��,-./�

���.&1&�0�
�#

;��,-./�

3%�����,-./�

��3!��%���,-./�

��3!��%�7���8�83��,-./�

 <�!�A��,-./�

 <�!�A�����,-./�

�33�%��!���7!5 ��'(�)*(���2#

��!�)���!����(0�0&��

 <53�%��73� ���!���7B %��,-./�

%�!����8�7��$�%!7!5 ��'(�)*(���2#

%�!����8�7��$�%!738�!5 ��'(�)*(���2#

�33�%��!���7���B�&�0���#

%�!����8�7!����7�����'(�)*(�����#

�������666

	���
��
���������������

%���7���&�0���#

��7���&�0���#

�����'(�)*(���
#

����,-./�

��%���,-./�

	���
��

��������������

��7���&�0���#

%���7���&�0���#

��$�%!&��'(�)*(���+#

��%3�%��,-./�

���!<�3!�&�0���#

	���
��

����������

��7���&�0���#

83���&�0���#

�����'(�)*(��
2+#

��3%�� !����'(�)*(�����+#

�%!�>��0&�=&�0��#

 ��?8��7�<����'(�)*(�����+#

����83��,-./�

 8���%�0&�=&�0��#

	���
��

ncandidates >= 3

User Queries

LASAIR EVENT BROKER

16

[11] Plans and Policies for LSST Alert Distribution
https://ldm-612.lsst.io/

[12] Call for Letters of Intent for Community Alert Brokers
https://ldm-682.lsst.io/

[13] LSST-UK report on future technologies for Lasair-LSST

[14] Plotly: Modern Analytic Apps for the Enterprise
https://plot.ly/

