
Blob Storage Technologies 
Contents 
Summary .................................................................................................................................. 1 

Requirements ........................................................................................................................... 1 

Technologies ............................................................................................................................ 3 

Experiments .............................................................................................................................. 4 

CephFS .................................................................................................................................. 4 

Swift ...................................................................................................................................... 7 

 
Executive Summary 
A study was undertaken to identify the key requirements for storing binary object like items in Lasair:LSST 
(cutout images and potentially light curves) and to shortlist preferred technology options for implementing 
such a store. 
 
The key requirements are that such a data store must: 

• Be able to store 15KB cutout images at a rate of at least 900 per second and preferably 2000 per 
second. 

• Be able to store 500KB light curves at a rate of at least 300 per second and preferably 700 per 
second. 

• Be able to store around 150TB per year and scale to an ultimate size of around 1.5PB. 
• Allow the retrieval of arbitrary items with low latency (<1s). 
• Allow the retrieval of items at a rate of at least 300 items per second. 
• Allow for a robust service with low downtime. 
• Allow for recovery in the event of a failure. 
• As far as possible within these constraints, minimise staff effort required for both development and 

ongoing maintenance. 
 
Two technology options were shortlisted: CephFS and Swift. Both technologies are based on the existing 
Ceph storage cluster and are designed to scale to multi-petabyte scale with a high degree of resilience. 
 
CephFS 
A CephFS filesystem using the existing Ceph storage cluster was tested with the following results: 

• Read performance was well in excess of the minimum requirements provided sufficient parallelism 
is employed. 

• Write performance was well in excess of the lower requirement for images, but only marginally 
better than the upper requirement – we should identify as soon as possible which of the two 
figures is actually applicable here. 

 
Swift 
Unfortunately our testing of Swift is not yet at the stage where we have comparable performance figures. 
Functionally it has been demonstrated to work and in terms of administration has some (minor) 
advantages over CephFS. 
 
  



Objective 
The objective of this work is to identify a preferred technology to store binary object like items in 
Lasair:LSST. These objects will definitely include the cutout images and potentially also light curves. There 
is no specific requirement that these two cases should use the same technology, although obviously it is 
desirable to minimise the number of different technologies and systems in use. 
 
Note on terminology: since we are considering file systems, object stores and databases, which all use 
different terminology, and also the term object is already used to refer to an astronomical object, we have 
generally used the term “item” as a generic term for “file, object or blob”. 
 
Requirements 
Types of item 
Cutout images are small (around 15KB for ZTF and expected to be similar for LSST), there are three per 
alert, they are unique to the alert and never need to be updated or changed. 
 
Light curves are potentially much larger (up to 500KB) and since they map to the object rather than the 
candidate most operations will be updates. 
 
Ingest rates 
The selected technology must be able to store images/lightcurves as fast as they are produced. It is the 
average rate over minutes to hours that matters – we don’t necessarily need to worry about matching 
brief bursts of higher alert rates, but we do want images (and light curves) available in a reasonable time. 
We also need to have enough “slack” in the system that it can catch up if interrupted for some reason. 
 
For the LSST alert stream we anticipatei that there will be around 10 million alerts per night. This implies 
around 1 million per hour or around 300 per second. 
 
We have also been using the “50 times more alerts than ZTF” measure. [Where does this come from?] On 
this basis, the maximum number of ZTF alerts in a night is around 500000, which implies maximum rates 
for LSST (averaged over one night) of around 2.5 million per hour or 700 per second. 
 
This implies target write rates of at least 900 items/s (13 MB/s) up to 2100 items/s (31 MB/s) for images; 
300 items/s (150 MB/s) up to 700 item/s (350 MB/s) for light curves. 
 
Requirement: for images, a minimum write rate for 15KB items of at least 900 items/s and preferably in 
excess of 2000 items/s. 
 
Requirement: for light curves, a minimum write rate for 500KB items of at least 300 items/s and 
preferably in excess of 700 items/s. 
 
Storage requirements 
We expect to retain all cutout images generated in the course of the 10 year survey. 
 
On the basis of 10M alerts per night we would expect around 10B images per year. ZTF has produced 
135M images per year; 50 times this implies 7B images per year. This results in a storage requirement of 
100 to 150 TB per year or 1 to 1.5 PB over the course of the 10 year survey. 
 
Requirement: for images, the ability to store 150TB per year scaling to an ultimate size of around 1.5PB. 
 
For light curves, we have obtained 1.5 million per year with ZTF. This implies around 75M in the first year 
with LSST occupying 35TB. Since light curves are typically updated on subsequent visits to the same object 



it is not entirely clear how this number will change after the first year. As an upper bound, we assume that 
it remains the same in which case we get 750M over 10 years requiring 350TB. 
 
Requirement: for light curves, the ability to store 35TB per year scaling to an ultimate size of around 
350TB. 
 
Retrieving Items 
For reading items we considered the following use cases: 
 
1. Retrieve a few images for display on a web page 

• Given an identifier (presumably previously obtained from DB or stream) can retrieve using HTTP. 
• Applies only to images. 
• Requires reasonable latency (< 1s). 

 
2. Retrieve up to order 1M items for analysis in a notebook or externally 

• Given a list of identifiers (presumably previously obtained from DB or stream) can retrieve using 
some readily available API for processing in a notebook or externally. 

• Would expect a small batch (~1K) to retrieve in at most a minute, and a larger batch (~1M) in order 
an hour. 

• Applies to both images and light curves. 
• We anticipate O100 active users for small queries of O100 items with the number of users 

decreasing with increasing size and complexity of query. We therefore don’t anticipate a major 
issue with significant numbers of queries running concurrently, but it is necessary that any long 
running queries should not unduly interfere with much smaller ones. 

 
3. Large scale (>> 10^6) data mining 

• Applies to both light curves and images. 
• Considered a stretch goal so no hard requirements, but forward compatibility with systems such as 

Spark may be something we want to consider. 
 
Requirement: for images, the ability to retrieve any specific image with latency < 1s 
 
Requirement: for images, the ability to retrieve at least 300 item/s (4.5MB/s) each by at least two 
queries in parallel. 
 
Requirement: for light curves, the ability to retrieve at least 300 item/s (150MB/s) each by at least two 
queries in parallel. 
 
Other considerations 
Although these requirements are not easily quantifiable, they are at just as important for our ability to 
operate the service in the long term. 
 

• Staff effort and specialised skills required, both to implement and maintain, must be kept as low as 
practical. 

• The service must be robust, that is unlikely to fail, and any failure that does happen should be as 
easy as possible to detect and recover from. 

  
Technologies 
This is a summary of the analysis at https://lsst-
uk.atlassian.net/wiki/spaces/LUSC/pages/885227561/Blob+Storage+Technology+Shortlist 
 



Particular technologies do not exist in isolation and are considered here in the context of the existing 
OpenStack/Ceph cluster. Some options which might otherwise look attractive do not necessarily make 
sense if they require significant effort to reimplement functionality that already exists here. 
 
Shortlisted Options 
Two technology options were shortlisted to move forward to more detailed experiments. These were 
selected on the basis of having an attractive combination of robustness, scalability and low effort to 
implement and maintain in the context of the existing OpenStack environment, while still being likely to 
meet the minimum performance criteria. 
 

2a. CephFS 
3a. Ceph/Swift based Object Store 
 

Deferred Options 
These options we have decided not to progress with now (generally because they would require 
significantly more effort than the shortlisted options), but we could return to them if none of the 
shortlisted options end up being suitable or requirements change. 
 

1b. Dedicated storage node with multiple filesystems 
2b. HDFS (or similar) 
3a. Ceph/RADOS + Swift 
3b. MinIO 
5a. MongoDB 
5b. Cassandra 
 

Eliminated Options 
These options were considered and eliminated due to obviously failing to meet one or more requirements. 
 

1a. Single filesystem directly attached to ingest node 
1c. Cluster of storage nodes 

 
Not Considered 
Options included for completeness, but not considered due to lack of time/expertise. 
 

4a. Store as records in the object database 
4b. Store as blobs in a MySQL database 

 
Experiments 
CephFS 
Read and write tests were performed using a simple Python script to read/write around 500MB of data to 
a mounted CephFS filesystem. Local caches on the reading VMs were cleared between benchmark runs. 
 
An important caveat is that these measurements were all taken at times when the rest of the system was 
relatively quiet. It was observed that at times when the Kafka cluster was active the performance was 
subjectively significantly lower and more variable. Unfortunately there was not time to explore this in any 
systematic way. 
 



Write performance 
 

 
 

 
 
Note: overwriting a file appears to be significantly slower than creating a new file. Deleting the existing file 
first as a separate operation actually appears to be quicker. 
 

 Write Overwrite Delete followed by write 
Size (KB) N files Time (s) Files/s MB/s Time (s) Files/s MB/s Time (s) Files/s MB/s 
15 33334 32.64 1021.24 15.31 171.37 194.51 2.91 75.37 442.26 6.63 
100 5000 7.49 667.55 66.75 23.72 210.79 21.07 9.28 538.79 53.87 
500 1000 1.79 558.65 279.32 5.19 192.67 96.33 2.24 446.42 223.21 

 

0

500

1000

1500

2000

2500

3000

3500

0 2 4 6 8 10 12 14 16 18

Fi
le

s /
 s

Number of processes

Write performance, 15KB Files 

Single directory all zeros Single directory random bytes

Multiple directories random bytes Multiple directories random bytes over 4 VMs

0

500

1000

1500

2000

2500

3000

3500

0 2 4 6 8 10 12 14 16 18

Fi
le

s /
 s

Number of processes

Write performance, 500KB Files 

Single directory all zeros Single directory random bytes

Multiple directories random bytes Multiple directories random bytes over 4 VMs



 
Read performance 
 

 
 

 
 
It is unclear why compression and ordering appear to make a difference with 15KB files and not with 
500KB files (one would expect the opposite if anything). Although local VM level caches were cleared 
between tests, it is possible that there is some caching taking place within the Ceph storage system that is 
causing this behaviour. It is also possible that it is simply an artefact caused by unaccounted load on the 
network and/or storage. 
 
Latency 
 
Latency to read a single randomly selected 15KB file (from a set of around 100,000) is around 0.25s. 
However, given the relatively small total volume of data involved and the potential for caching (especially 
of metadata), this is probably a best case scenario and we should consider verifying that latency remains 
acceptable in a more realistic scenario. 
 

0

2000

4000

6000

8000

10000

12000

14000

0 10 20 30 40 50 60 70

Fi
le

s /
 s

Number of processes

Read performance, 15KB Files 

All zeros Random bytes (in order written)

Random bytes (random order) Random bytes (random order) over 4 VMs

0

500

1000

1500

2000

2500

3000

3500

0 10 20 30 40 50 60 70

Fi
le

s /
 s

Number of processes

Read performance, 500KB Files 

All zeros Random bytes (in order written)

Random bytes (random order) Random bytes (random order) over 4 VMs



Other issues 
CephFS is a shared file system, which has the advantage that minimal work would be required to modify 
existing code that already uses a filesystem for storage. However, it does require that all VMs mounting 
the filesystem use the same UIDs and GIDs, at least for those users that need access to it. This can be done 
using a central identity system (e.g. LDAP etc.) or by arranging for the use of common UIDs and GIDs 
through whatever deployment and configuration mechanism is used. 
 
For users requiring an HTTP interface, that would need to be deployed separately, although this is not 
likely to require a large effort. 
 
Summary 
 

• Write performance appears to be adequate for image files at an ingest rate of 900 items/s, but 
potentially marginal at 2000 items/s. 

• Write performance is sufficient for light curves. 
• There appears to be a bottleneck when writing to a single directory – achieving useful parallel 

scaling on write requires writing to multiple directories. 
• Read performance appears to be well in excess of minima, provided that multiple files can be read 

in parallel. 
• Latency also appears to be acceptable. 
• These performance figures may be slightly optimistic due to contention for network and storage 

from other workloads and caching effects. This is only likely to be a major issue with regard to 
writing image files as the other performance figures comfortably exceed minimum requirements. 
 

Swift 
It has not been possible to conduct comparable performance testing using the Swift interface to the Ceph 
storage cluster due to lack of time. 
 
Two proof of concept experiments were undertaken. The first demonstrates querying an archive of ZTF 
light curves stored as JSON files over an HTTP interface and is described in detail at described at 
https://lsst-uk.atlassian.net/wiki/spaces/LUSC/pages/862355464/Data+Mining+Light+Curves. The second 
demonstrates extracting image files from a Kafka stream of alerts and writing them to a Swift object store 
and is described at https://lsst-
uk.atlassian.net/wiki/spaces/LUSC/pages/975503385/Swift+image+store+POC. 
 
Swift does have some advantages over CephFS in terms of ease of administration: 

• Uses Keystone for AAI so no requirement to deploy manage anything additional 
• No fixed size so no effort required to expand/manage as data volumes grow 
• Built-in high performance HTTP interface for read access. 

 

i https://confluence.lsstcorp.org/display/LKB/LSST+Key+Numbers 
 


