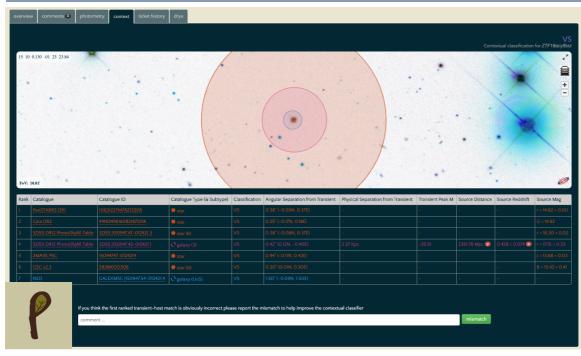
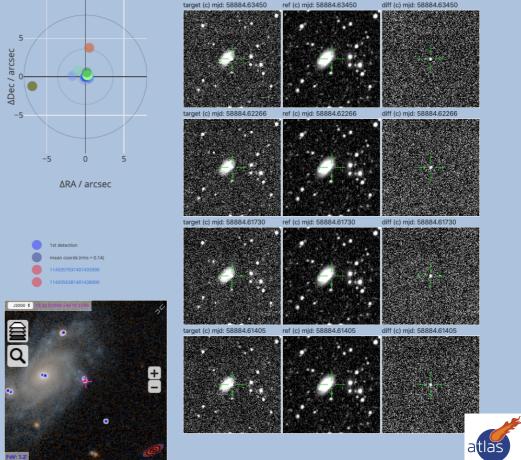

Sherlock - Contextual Transient Classifier


> a boosted decision tree algorithm that mines a library of historical and on-going astronomical survey data in an attempt to predict the nature of a transient object based on the context derived from the resulting crossmatched associations.

Classified as SN at distance 12.05 arcsec.

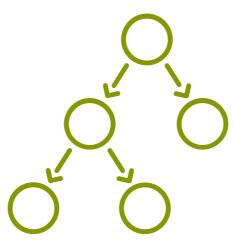
The transient is possibly associated with LCRSB143138.2-063929; a 15.55 mag galaxy found in the NED-D Galaxy Catalogue v13.1. It's located 2920.30 S, 5017.30 E (4.9 Kpc) from the galaxy centre. A host distance of 83.5 Mpc implies a transient M = -15.54.

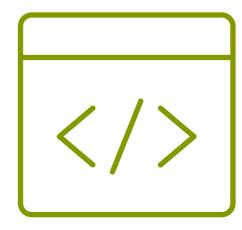

Context info: The transient is synonymous with SDSS J080048.36+340648.9; an unknown-mag AGN found in the Million Quasars (MILLIQUAS) Catalog v5.2 catalogu It's located 0.2" from the AGN core.

LASAIR SN

The transient is possibly associated with [BFW2006]J218.49963+40.24245/4676942; an unknown-mag galaxy found in the NED/GLADE catalogues. It's located 4.92" N, 33.59" W (17.1 Kpc) from the galaxy centre. A host z=0.025 implies a m - M = 35.20.

2020-02-05 23:55:38 (matthew.mccollum): ASASSN Object 2020-02-08 19:03:58 (ken.smith): Should be in the good list!





3 Core Components

Catalogue Database Algorithm Parameters

Code

all-sky survey catalogues

PS1 DR1, Gaia DR2, SDSS DR12 PhotoObjAll Table, SDSS DR12 SpecObjAll Table, GSC v2.3, 2MASS XSC & PSC

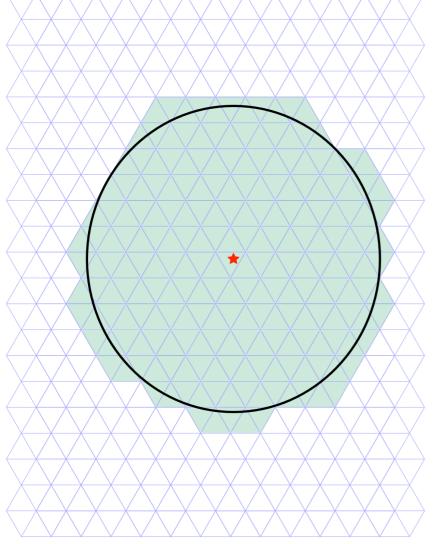
source-specific catalogues

Million Quasars Catalog v5.2, Veron-Cett AGN Catalogue v13, Downes Catalog of CVs, Ritter Cataclysmic Binaries Catalog v7.21, The GLADE Galaxy Catalogue v2.3, NED-D Galaxy Catalogue v13.1

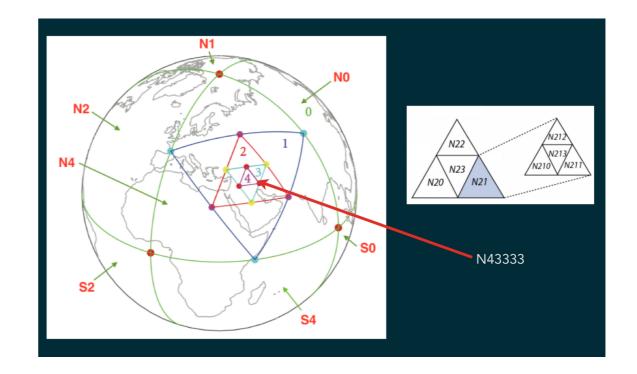

NASA/IPAC Extragalactic Database - remote query with local caching

- one table per catalogue
- tables (and views) follow a strict naming scheme
- 4.6TB storage footprint this includes many legacy tables
- larger catalogues host a minimal column set to reduce footprint and index sizes
- indexed with 3 HTM levels (10, 13, 16)

ROYAL South ROYAL South ROYAL

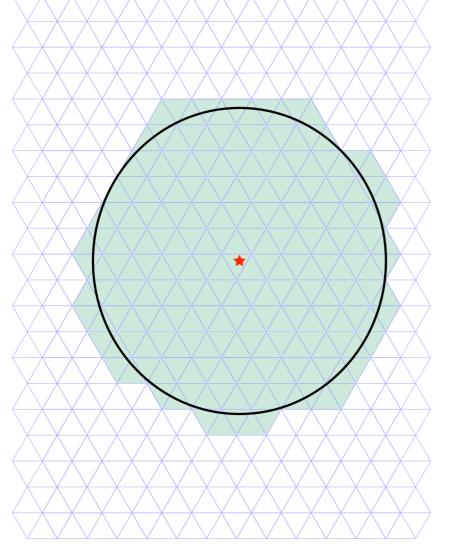

My S

<pre># CONSTANTS pi = (4 * math.atan(1.0)) DEG_TO_RAD_FACTOR = pi / 180.0 RAD_TO_DEG_FACTOR = 180.0 / pi</pre>	R = pi / 180.0
<pre>aa = (90.0 - dec1) * DEG_TO_RAD_FACTOR bb = (90.0 - dec2) * DEG_TO_RAD_FACTOR cc = (ra1 - ra2) * DEG_TO_RAD_FACTOR one = math.cos(aa) * math.cos(bb) two = math.sin(aa) * math.sin(bb) * math.cos(cc)</pre>	2) * DEG_TO_RAD_FACTOR * DEG_TO_RAD_FACTOR a) * math.cos(bb)
<pre># Because acos() returns NaN outside the ranges of -1 to +1 # we need to check this. Double precision decimal places # can give values like 1.000000000002 which will throw an # exception. three = one + two if (three > 1.0): three = 1.0 if (three < -1.0): three = -1.0</pre>	ck this. Double precision decimal places s like 1.0000000000002 which will throw an o :
<pre># BE CAREFUL WITH PRECISION PROPAGATION thisVal = math.acos(three) angularSeparation = float(thisVal) * RAD_TO_DEG_FACTOR * 3600.0</pre>	cos(three)
angularSeparation = "%0.*f" % (precision, angularSeparation)	n = "%0.*f" % (precision, angularSeparation)

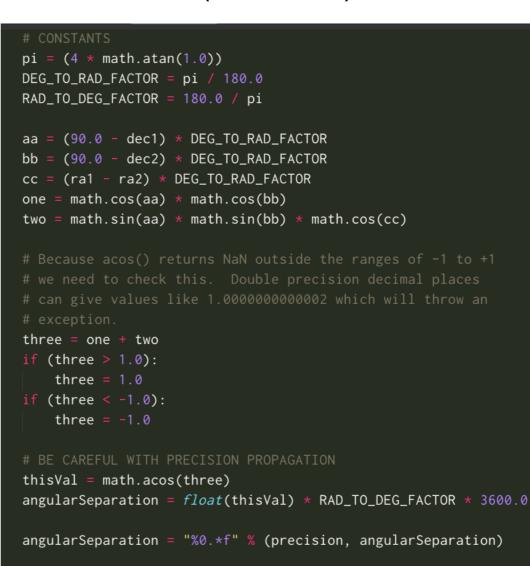

x2.9e⁹

- one table per catalogue
- tables (and views) follow a strict naming scheme
- 4.6TB storage footprint this includes many legacy tables
- larger catalogues host a minimal column set to reduce footprint and index sizes
- indexed with 3 HTM levels (10, 13, 16)

My^S



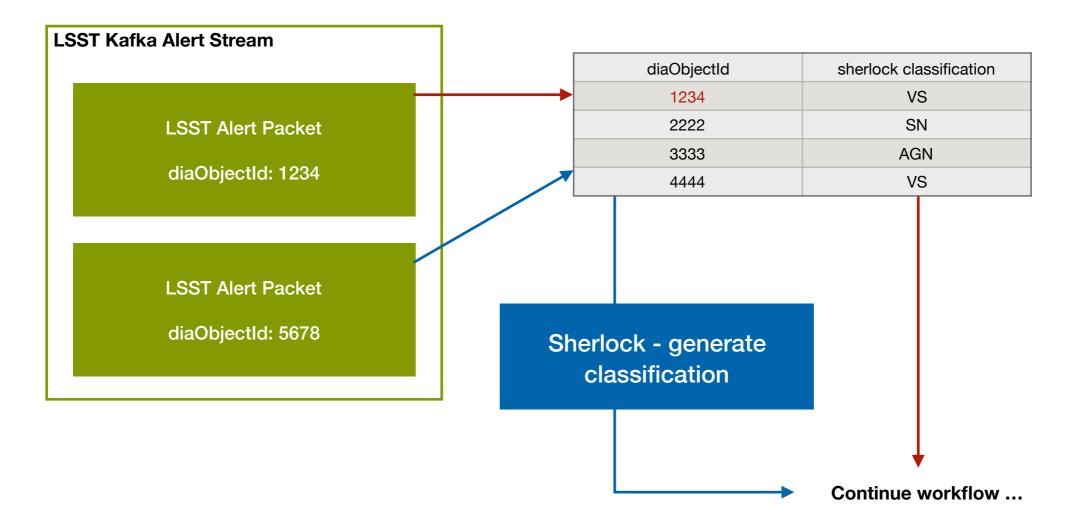
select * from big_catalogue where htmID
in (123,1234,5673,7823 ...)



- one table per catalogue
- tables (and views) follow a strict naming scheme
- 4.6TB storage footprint this includes many legacy tables
- larger catalogues host a minimal column set to reduce footprint and index sizes
- indexed with 3 HTM levels (10, 13, 16)

ROYAL OBSERVATORY

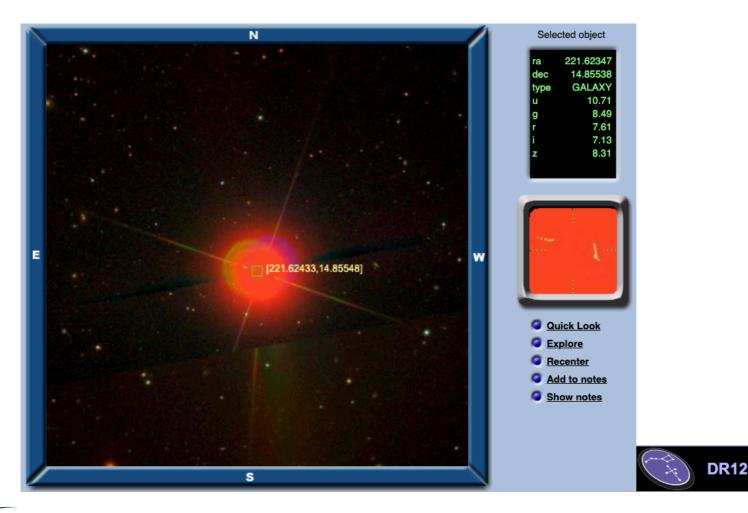
MyS



x ~100

David Young : Lasair Technology Review Meeting : ROE :17-18 March 2020

Side Note on Classification Caching


Integer matching is cheap!

David Young : Lasair Technology Review Meeting : ROE :17-18 March 2020

- helper-table that maps heterogeneous columns in catalogues to a custom defined set of column-names (RA, DEC, redshift, distance, magnitudes)
- Database views (attempt to) define specific source types
- Quality of the data between catalogues and intra-catalogue vary vastly. Important to understand strengths, weaknesses and foibles of each catalogue.

VATORY

Algorithm Parameters


synonyms vs associations

Examples of synonym matches are CVs, AGN and variable stars (VS)

Examples of associations matches are SNe and brightstars (BS)

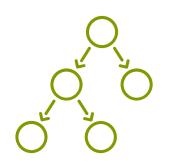
Transient Classifications

- 1. Variable Star (VS) if the transient lies within the synonym radius of a catalogued pointsource,
- 2. Cataclysmic Variable (CV) if the transient lies within the synonym radius of a catalogued CV,
- 3. **AGN** if the transient lies within the synonym radius of a catalogued AGN,
- 4. **Bright Star (BS)** if the transient is not matched against the synonym radius of a star but is associated within the magnitude-dependent association radius,
- 5. *Nuclear Transients (NT)* if the transient falls within the synonym radius of the core of a resolved galaxy,
- 6. *Supernova (SN)* if the transient is not classified as an NT but is found within the magnitude-, morphology- or distance-dependant association radius of a galaxy, or
- 7. Orphan if the transient fails to be matched against any catalogued source.

Algorithm Parameters

crafting meaning from crossmatches

Search Algorithms are written in YAML - plain text


Search Module Parameters

- angular separation crossmatch radius
- physical separation crossmatch radius
- source magnitude filtering
- magnitude dependent search radii for bright stars and galaxies

Classifications & Reliabilities

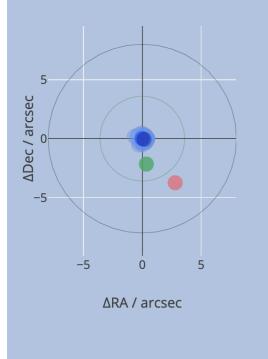
- transient given a predicted classification based on the parameters of the catalogued source it matches against
- transients can be given multiple classifications which are later ranked

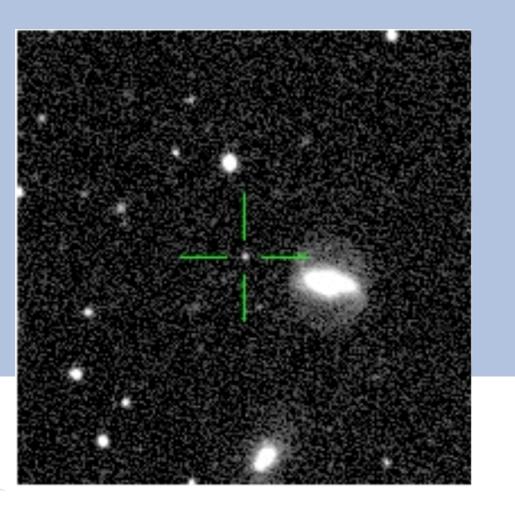
Algorithm Parameters

contextual classification is harder than you think!

Spectral Type

SN la


Context:


ORPHAN

The transient location is not matched against any known catalogued source

omments:

2020-03-03 10:40:47 (michael.fulton): Looks like a very good object to me. Why classed as an orphan though?! 2020-03-03 10:50:06 (ken.smith): This is a fast track object - possibly associated with NGC 5804 at 59Mpc.

- angular separation
- galaxy morphology
- physical-distance separations

David Young : Lasair Technology Review Meeting : ROE :17-18 March 2020

- 1. *Parallel crossmatching* of the transient location against each catalogue in the library.
- 2. *Internal crossmatching* of the results of stage 1. to find and merge the information from the same unique astrophysical sources recorded across multiple catalogues.
- 3. *Ranking of the post-merge results* based on the secureness of the classifications and the quality if the underlying catalogue data.
- 4. *Reporting* of the top ranked result as the most likely nature of the transient.

LASAIR - Enhancement Suggestions

- 1. Classification Caching
- 2. Visualisation

						•		•	+
FoV:	Catalogue	Catalogue ID	Catalogue Type (& Subtype) Classifica	Angular Separation from tion Transient	Physical Separation from Transient	Transient Peak M	Source Distance	Source Redshift	Source Mag
1	SDSS DR12 PhotoObjAll Table	SDSS J232924.87-072320.5	Ogalaxy (3) NT 🛈	0.16" (0.16N, -0.02E)	0.39 Крс	-20.67	665.02 Mpc	0.141 ± 0.042	r = 18.80 ± 0.03
	SDSS DR12 PhotoObjAll Table	SDSS J232924.87-072320.5	Ogalaxy (3) SN 2	0.16" (0.16N, -0.02E)	0.39 Крс	-20.67	665.02 Mpc	0.141 ± 0.042	r = 18.80 ± 0.03
				0.29" (0.29N, -0.04E)	_		_	-	r = 19.18 ±
	PS1 Ubercal Star Catalogue v1	1232924877007232040	₩ star VS 3	0.29 (0.29N, -0.04E)					0.01
	PS1 Ubercal Star	1232924877007232040 <u> SB9B002229</u>	star VS 3 ⑦ unclear (3) UNCLEAR		- 				0.01 B = 20.22 ± 0.43
3 4 5	PS1 Ubercal Star Catalogue v1					-	-	-	B = 20.2

Questions/Discussion