15/05/2019

D. J. Prole CARDIFF UNIVERSITY

PRIFYSGOL

Characterising Low Surface Brightness Galaxies in the Field using Large Sky Surveys

Daniel J. Prole

Supervisors: J. I. Davies (Cardiff), Michael Hilker & Remco van der Burg (ESO)

PRIFYSGOL

<u>AERDY</u>

Low Surface Brightness (LSB) Galaxies

PRIFYSGOL

[™]AERDΥ_Ιβ

Telescopes & Surveys

Optical design:

Narrow PSF wings

Minimal scattered light

Fast optics

Survey design:

Sufficient integration times

Careful background subtraction

Appropriate source extraction software

The Dragonfly Telephoto Array

(Abraham & van Dokkum 2014)

Photo: Pieter van Dokkum

Ultra-Diffuse Galaxies (aka large LSB galaxies)

Milky way sized (effective radii > 1.5 kpc)

Stellar masses more like dwarfs ($M_* \sim 10^8 M_{\odot}$)

Properties in groups/clusters:

Red sequence; Old stellar pops / metal poor

Absence of tidal features (high ML ratios)

Halo masses similar to dwarfs (e.g. Prole +19)

Relatively little is known about the field population... Estimating distances is hard!

Ultra-Diffuse Galaxies: Where do they come from?

Secular mechanisms	Environmental mechanisms
Stellar feedback: Supernovae Massive stars	Tidal heating in group or cluster potentials Interactions with other galaxies
High angular momentum (dwarf galaxies with high spin)	Early quenching of massive galaxies?

Question: What are the relative importances of secular & non-secular evolution? Compare UDGs in the field vs. in groups & clusters...

PRIFYSGOL

Data: KiDS, HSC-SSP, GAMA

Detection / Structural parameters:

KiDS r-band (VST / OmegaCam)

~180 square degrees (GAMA overlap)

Wider & shallower than HSC-SSP DR1

Colours:

HSC-SSP (g, r)

~0.5mag deeper

Reduces footprint by $\frac{1}{3}$

DR2 in May

Recovery Efficiency measured using synthetic galaxy injections and running full pipeline...

15/05/2019

D. J. Prole

CARDIFF

Detection & Measurement Pipeline

Final selection: 212 UDG candidates No distances!

15/05/2019

LSST: UK All Hands Meeting

D. J. Prole

CARDIFF

PRIFYSGOL

^{AE}RDΥ_P

Measurements & Recovery Efficiency

Empirical UDG model

We know what we observe...

Can we explain it using what we know of UDGs?

Model = Size distribution + Luminosity distribution + Stellar population model + Cosmology

Ϳϒϝϟ

Empirical model for Interlopers

Assumptions:

Interlopers are dominated by bright/massive background galaxies

Massive galaxies with Sersic n <2.5 are typically late types (e.g. Vulcani+14, Danielli+18)

The dominant interlopers are therefore massive late types

Model ingredients:

Stellar mass function (Baldry +12, Muzzin +13)

Stellar mass-size relation (van der Wel +14)

Redshift dependant colour model (Taylor +12)

D. J. Prole

e CARDIFF UNIVERSITY

PRIFYSGOL

<u></u> Α^εRDyp

Comparison with GAMA redshifts

- Crossmatch KiDS sources with GAMA catalogue (~30 sources)
- Estimate physical sizes from spec. redshifts
- Compare redshift distributions of intrinsic UDGs vs. interlopers

D. J. Prole

CARDIFF UNIVERSITY

PRIFYSGOL

DYp

Results: Colour distributions

Prole et al. 2019; Submitted to MNRAS

UDGs in the field seem much bluer than those in clusters!

UDG field density: <8±3 x10-3 cMpc-3 (0.5 times SAM prediction)

<5 times HI-UDG field density

Conclusions

UDGs appear bluer in the field than in clusters, some showing signs of localised SF

Field UDGs are produced with similar mass efficiencies as cluster UDGs

SAMs overproduce the numbers of UDGs, including HI-rich UDGs

HI-rich UDGs comprise at least one-fifth of the overall field population

Improvements with LSST

>2 mags deeper than KiDS (r ~ 27.5 vs ~25 for 5 σ point source)!

Photometric redshifts will allow distance estimates, redshift distributions etc.

Footprint over an order of magnitude larger than KiDS!

Things to worry about:

- Background subtraction
- Wings of PSF?
- Source crowding
- Recovery efficiency estimates?

