Catalogue Matching at LSST Depths

Tim Naylor

But Tom Wilson did most of the preliminary work.
With help from Sarah Casewell, Aleks Scholz, Vicky Scowcroft.

What am I going to say?

- LSST is so crowded (at all galactic latitudes) that
- "error circle" matching will give high false positive rates
- faint stars will affect the astrometric positions.
- But
- Bayesian matching will remove most false positives
- we can parameterize the "astrometric tug".
- We aim to provide these via a Phase B package.
- Already provided a Gaia DR2 vs WISE match (Wilson \& Naylor MNRAS 2018b).

The papers

- Sutherland \& Saunders (MNRAS, 1992).
- Naylor, Broos \& Feigelson (ApJS, 2013).
- Wilson \& Naylor (MNRAS, 2017)
- Wilson \& Naylor (MNRAS, 2018a,b)

Why is this important?

- Many science cases call for drawing in information from other wavelengths.
- E.g. a UK strength is using legacy IR catalogues, and EUCLID.

Conventional Catalogue Cross Matching

- Draw 99\% confidence circle.
- Pick closest star.
- Find false positive rate with randomly placed circles.

Naylor, Charles \& Longmore (1991)

Problems of Conventional Cross Match

- No preference for close matches
- (Indeed error circles typically far too large.)
- What about close faint stars?
- Intuition...
- closer stars are more likely to be the counterpart
- fainter stars are more likely to be field stars.

The Problem

- Have to understand astrometric uncertainties.
- 2D Gaussian, Quetelet (1796-1874), cited by John Herschel.

How the Bayesian Match Works

$$
\begin{aligned}
P\left(H_{a} \mid D\right) & =\frac{\frac{X g(\Delta x, \Delta y)}{N_{\gamma}} \frac{c\left(m_{a}\right)}{f_{\gamma}\left(m_{a}\right)}}{1-X+\sum_{\alpha} \frac{X g(\Delta x, \Delta y)}{N_{\gamma}} \frac{c\left(m_{\alpha}\right)}{f_{\gamma}\left(m_{\alpha}\right)}} \\
P\left(H_{0} \mid D\right) & =\frac{1-X}{1-X+\sum_{\alpha} \frac{X g(\Delta x, \Delta y)}{N_{\gamma}} \frac{c\left(m_{\alpha}\right)}{f_{\gamma}\left(m_{\alpha}\right)}}
\end{aligned}
$$

The Plan

1. Use Bayesian matching - decreases area searched by factors of >100.

WISE data in Galactic Plane

- Why Wise? Comparable to single visit LSST.
- Gaia DR1 vs WISE.
- Long, non-Gaussian tail.

Hypothesis - stars Hiding in the PSFthe astrometric tug

- WISE PSF is 6 " (in shorter bands).
- Star 4" away, 20x (3 mags) fainter.
- Gives 0.2" disturbance.

Simulation

- Assume no deblending.
- Nicely puts in non-Gaussian tail, which increases as stars get fainter.

The Plan

1. Use Bayesian matching - decreases area searched by factors of >100.
2. Allow for "astrometric tug".

Model also useful for moving objects.

The Plan

1. Use Bayesian matching - decreases area searched by factors of >100.
2. Allow for "astrometric tug".

Model also useful for moving objects.
3. Add in photometric information - improves Bayes factors by an order of magnitude.

Column Name	FITS Name	Description
Match Probability	MATCH_P	Probability of match
η	ETA	Photometric logarithmic likelihood ratio
ξ	XI	Astrometric logarithmic likelihood ratio
1% Contamination Probability	CONT_P1	Probability of source having contaminant of at least 1\% relative flux given its separation from its corresponding Gaia detection.
10\% Contamination Probability	CONT_P10	Ditto at 10\%.
Average Contamination	AVG_CONT	Mean contaminating relative flux for local field

Conclusions

- LSST positions will be affected by contamination from fainter stars.
- In galactic plane this is estimated to be as bad as WISE, i.e. dominant
- (though the numbers are very uncertain).
- Bad news.
- It will affect ability to identify faint progenitors.
- It will affect proper motions, and be really bad if we use different spatial resolution surveys to get baseline.
- Good news.
- We can cure this, either as a matching tool, or catalogues of matches.
- Data fusion will then provide best magnitudes.

