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What am I going to say?

• LSST is so crowded (at all galactic latitudes) that 
– "error circle” matching will give high false positive 

rates
– faint stars will affect the astrometric positions.

• But
– Bayesian matching will remove most false positives
– we can parameterize the “astrometric tug”.

• We aim to provide these via a Phase B package. 
• Already provided a Gaia DR2 vs WISE match 

(Wilson & Naylor MNRAS 2018b).



The papers

• Sutherland & Saunders (MNRAS, 1992).
• Naylor, Broos & Feigelson (ApJS, 2013).
• Wilson & Naylor (MNRAS, 2017)
• Wilson & Naylor (MNRAS, 2018a,b)



Why is this important?

• Many science cases call for drawing in 
information from other wavelengths.

• E.g. a UK strength is using legacy IR 
catalogues, and EUCLID.



Conventional Catalogue Cross 
Matching
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Naylor, Charles & Longmore (1991) 

• Draw 99% 
confidence circle.
• Pick closest star.
• Find false positive 

rate with 
randomly placed 
circles. 







Problems of Conventional Cross Match

• No preference for close matches
• (Indeed error circles typically far too large.)
• What about close faint stars?
• Intuition…
– closer stars are more likely to be the counterpart
– fainter stars are more likely to be field stars.



The Problem

• Have to understand astrometric uncertainties.
• 2D Gaussian, Quetelet (1796 – 1874), cited by 

John Herschel.
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How the Bayesian Match Works

The Astrophysical Journal Supplement Series, 209:30 (11pp), 2013 December Naylor, Broos, & Feigelson

Table 1
A Summary of the Meanings of the Symbols Used

Symbol Description

A The area of an error circle.
b(m)dm The probability that the brightest star in a given error circle (be it counterpart or field) has a magnitude between m and m + dm.
B(m′) The integral of the above from m = −∞ to m′, i.e., the probability that the brightest star is brighter than magnitude m′.
bf (m)dm The probability that the brightest field star in a given error circle has a magnitude between m and m + dm.
Bf (m′) The integral of the above from m = −∞ to m′, i.e., the probability that the brightest field star is brighter than magnitude m′.
c(m)dm The fraction of IR counterparts that have magnitudes between m and m + dm.
C(m′) The integral of the above from m = −∞ to m′, i.e., the probability that an IR counterpart is brighter than magnitude m′.
D The observed data catalog.
f (m)dm The fraction of field stars with magnitudes between m and m + dm in the region of the IR catalog close to the X-ray position,

in the absence of any crowding effects due to counterparts.
F (m′) The integral of the above from m = −∞ to m′, i.e., the probability that a field star is brighter than magnitude m′.
g(∆x, ∆y)dxdy The fraction of IR counterparts that lie in a box defined by ∆x to ∆x + dx and ∆y to ∆y + dy with respect to the X-ray position.
H0 The hypothesis that the IR counterpart is not in the catalog.
H̃0 The hypothesis that the IR counterpart is in the catalog.
K A normalization constant.
L(i, j) The likelihood that star i is the counterpart and star j a field star.
M The number of pixels occupied by stars.
N The total number of field stars per unit area in our IR catalog.
O The probability that an infinitesimal pixel on the sky is occupied by a star.
P (0) The probability that none of the stars in the catalog are the counterpart.
P (i) The probability that star i is the IR counterpart of the X-ray source.
T The total number of pixels in the area of sky observed.
X The fraction of X-ray sources that have counterparts in the IR catalog.
Z The fraction of error circles that have a star (be it counterpart or field) within them that is in the IR catalog.
Zc The fraction of X-ray sources that have counterparts within a given error circle in the IR catalog.
Zf The fraction of error circles that have a field star within them that is in the IR catalog.

Figure 1. Probability density functions for field stars and counterparts as
functions of magnitude and position. The gray scale represents values illustrative
of the general form of these functions, not real data.

Consider the density of stars as a function of distance from
the X-ray position and magnitude. This is a three-dimensional
volume, but in Figure 1 it is illustrated using radial distance
from the X-ray position so there is just one position coordinate.
The value of the probability density function is represented as
a gray scale, and this function is shown for both field stars
and counterparts. The density of field stars in this example is
independent of position, but increases with magnitude until it
reaches the limiting magnitude of the catalog at around m = 18.
Conversely, the true counterparts tend to be brighter than the
field stars, and their density declines with distance from the
X-ray position.

To express Figure 1 mathematically requires the probability
density function representing the distribution of field stars with

magnitude, evaluated at a magnitude m, which is f (m). Thus,
given that there is a field star, f (m)dm is the probability that its
magnitude lies between m and m+dm, and so f (m) has units of
mag−1, and integrates to one.4 The left-hand panel of Figure 1
represents the density of field stars per unit area on the sky, per
magnitude, and so if the total number of field stars per unit area
in our catalog is N, then the probability density at any point in our
volume is Nf (m), which has units of mag−1 arcsec−2. In contrast
the sky density of counterparts is distributed according to the
normalized two-dimensional Gaussian function that represents
the uncertainty ellipse of the X-ray position, which we label
g(∆x, ∆y) where the coordinates are with respect to the X-ray
position. The probability distribution for the magnitudes of the
counterparts is given by Xc(m), where X is the fraction of
X-ray objects that have counterparts in the catalog, and c(m) is
the probability density function in magnitude. Thus the density
of X-ray counterparts in our volume is Xc(m) g(∆x, ∆y), again
with units of mag−1 arcsec−2.

It is illuminating to draw the distinction between quantities
such as Xc(m) and c(m). f (m) and c(m) are true probability
density functions which are normalized to integrate to one, and
answer the question “given a star, what is the probability that its
magnitude lies between m and m + dm.” In contrast Xc(m)dm
answers the question “what is the probability that the counterpart
to a given star lies between magnitudes m and m + dm,” with the
extra term covering the possibility that there is no counterpart
in our IR catalog. Functions such as Xc(m) are not normalized
to integrate to one, and so we shall refer to them simply as
probability functions, not probability density functions.

4 Strictly f (m) is also a function of position in the IR catalog, and as
described in Section 5 our implementation requires that changes on the scale
of tens of error circle radii must be small. Hence f (m) should be taken to mean
its value close to the X-ray position, though not sufficiently close that
crowding by counterparts of X-ray sources affects it.
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re-introducing the likelihood ratio to our probabilities.
Therefore, after splitting c(mk,ml) into c(mk )c(ml); can-

celling c(ml) and f�(ml), assumed to be equivalent; substi-
tuting for equation A2; and multiplying by 1� X, we recover
equations 6 and 7 of Naylor et al. (2013),
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Note that the g term of Naylor et al. (2013) is our G, as they
add a systematic uncertainty to their X-ray uncertainties,
believed to reflect the infrared uncertainties, and thus it is
a convolution of two Gaussians.

While the appendix derivation of Naylor et al. (2013)

required P(H0) = 1 � X and P
⇣ eH0

⌘
= X, our new derivation

contains these implicitly as the ratio of counterparts per unit
area to unmatched stars per unit area. We therefore have
indi↵erent priors, assuming a flat prior across all hypotheses.
This is required in our formalism due to the extension to
a symmetric handling of stars in both catalogues, as well
as the extension to multiple potential counterparts in each
catalogue. The number densities of matched and unmatched
objects can only be considered as simple Bayesian priors in
the case where the information of only one catalogue is used,
for one potential counterpart. However, the end result is
identical, and the equations correctly reduce to their original
forms in various limits.
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The Plan

1. Use Bayesian matching – decreases area 
searched by factors of >100.



WISE data in Galactic Plane

Contamination in Catalogue Cross-Matching 3

Catalogue Criteria

Gaia astrometric excess noise > 0.865mas; or matched observations  8 or
astrometric n good obs al + astrometric n good obs ac < 60

WISE “Contam” flag is either “D”, “P”, “H”, or “O”; or “ext” flag is 2, 3, 4, or 5; or
“Phqual” flag is “X” or “Z”; “detbit” == 0; Mag == NaN; “sat” flag > 0; or �Mag == NaN

APASS Mag > 20 or Mag < 10

2MASS “Galcontam” or “Mpflag” flags set; or “Blend” flag == 0; “Read” flag == 0 or 3; Mag == NaN; or �Mag == NaN

IPHAS pstar < 0.9; or Mag == NaN, “Saturated” flag set, or �Mag == NaN

Table 2. Table showing the various flags for rejection from the catalogues used.

a source, with “true” position at the origin, at position x, y
as a centered, circular, two-dimensional Gaussian (Quetelet,
summarised by Herschel 1857)

g(x, y,�) = 1
2⇡�2 e

� x

2+y2

2�2 , (1)

where � is the astrometric uncertainty in either of the or-
thogonal axis directions. The astrometric uncertainty can be
approximately related to the photometric signal-to-noise ra-
tio (SNR) and image PSF scale length. King (1983) quotes
the relationship as the FWHM of the image divided by the
SNR.

When considering a circular geometry, we can trans-
form this to radial coordinates by integrating over ✓, which
changes the Gaussian distribution to a Rayleigh distribu-
tion, given by

g(r,�) = r

�2 e

� r

2
2�2 . (2)

g(x, y,�) is a probability density function, the probabil-
ity per unit area, that the WISE star will be detected at an
o↵set x, y from the Gaia source. Alternatively, g(r,�) is the
probability per unit length that the WISE star is detected
at a radial o↵set r from the Gaia source. It is the function
g(r,�) that we will compare to our data in Section 4.

4 FITTING THE DISTRIBUTION

To check the validity of g, our AUF, we must test it against
some example data. Consider a large sample of matches,
i.e. pairs of stars, all of which have a similar astrometric
uncertainty �. The number of matches per unit distance in
a narrow annulus r to r + �r is

dN

dr

(r,�) = M

�r

r+�rπ
r

r

�2 e

� r

2
2�2 dr, (3)

where M is the total number of matches. Assuming all stars
in the sample are true matches (see Section 4.2 for further
discussion), we can then compare our expected number of
stars per unit distance with the number detected.

In this section we will consider matches between WISE
and the Tycho-Gaia Astrometric Solution (TGAS; Michalik
et al. 2015) for an 800 square degree region of the Galactic
plane (100  l  140, �10  b  10). Although the TGAS is a
relatively bright subset of the full Gaia dataset, limiting our
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Figure 1. Figure showing separation of proximity matches be-
tween TGAS and WISE, for WISE objects with quoted uncer-
tainty � = 0.039 ± 0.001”. Inset Figure shows the cumulative
distribution, with reference cumulative Rayleigh distribution of
� = 0.039” shown as a red dashed line.

match numbers, we will require the proper motions, which
are only available for TGAS stars, in Section 4.2. We will
discuss the e↵ects of the full magnitude range in Section 8,
and find the magnitude cut does not a↵ect the conclusions
drawn in this Section.

4.1 Uncertainties for WISE Data

Matching between our two catalogues, we take WISE stars
in a narrow range of � values (typically . 0.01”) and proxim-
ity match them in a nearest-neighbour scheme to the TGAS
dataset. From this we find the number of stars in given ra-
dius bins, and plot the number of stars per unit radius within
each annulus, along with the assumed astrometric distribu-
tion, based on the quoted uncertainties. Figure 1 shows the
resulting distribution for one narrow range of uncertainties
� = 0.039±0.001”. We can see that the distribution is reason-
ably well described by a Rayleigh distribution in the inner
region, below r ' 0.1”, but that there is a significant non-
Gaussian tail to the distribution of match distances.

MNRAS 000, 1–10 (2017)
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4.2 Common Sources of Additional Astrometric
Sources

There are two obvious potential causes of non-Gaussian
data: a population of uncorrelated false matches, and the
e↵ects of proper motion on the apparent match distance be-
tween two catalogues of di↵erent epochs. As we show below
neither of them can adequately explain the e↵ect entirely,
requiring an alternative explanation.

4.2.1 Proper motions

Proper motions are often cited as being the cause of these
“wings” at large separations (e.g., Section 6.4 Figure 2 of
Cutri et al. 2012, Appendix A1 of Flesch & Hardcastle 2004).
As WISE operated in 2010 while Gaia records positions in
epoch J2015 we must check to see if this is a significant cause
of match o↵sets. We obtained theGaia proper motions in the
orthogonal axes for all stars in the 800 square degree region
of the Galactic plane used to construct the distributions in
Figure 1.

We calculated the new celestial coordinates for the Gaia
positions, transformed from the J2015 epoch to WISE’s
J2010 epoch as

RAnew = RA � 5year · µRA [cos(Dec)]�1 , (4)

with an equivalent transformation for declination, where
µRA and µDec are the projected proper motions in the two or-
thogonal sky axis directions. The new distribution of proper
motion-corrected separations was compared to a Gaussian of
the average uncertainty � = 0.039”, shown in Figure 2. As
can be seen, while the distribution tightens slightly towards
smaller separations, the large, non-Gaussian tail remains be-
yond r ' 0.1”. This leads to an incompatible cumulative dis-
tribution shown inset to Figure 2. The non-Gaussian tail
increases with decreasing brightness (see Section 7 for more
details), and the average magnitude of stars in Figure 2 is
bright, at W1' 11. We therefore cannot explain most of the
non-Gaussianity of the distributions with proper motions.

4.2.2 Uncorrelated False Matches

While we cannot explain the non-Gaussianity to the match
distributions with proper motions, these are purely proxim-
ity matches. We expect some contamination from uncorre-
lated stars which could potentially explain the non-Gaussian
wings. At its most dense, there are 2 ⇥ 104 Gaia stars per
square degree in the Galactic plane region in question. The
expected number of randomly placed objects in a circle of
a given radius, U, is the multiple of the stellar density, dN

dA ,
and the area, A,

U =
dN

dA

⇥ A = 2 ⇥ 104 deg�2 ⇥ ⇡
✓

0.5”
3600”/deg

◆2
= 0.0012, (5)

where we have limited ourselves to a circle of radius 0.5”
as per Figure 1. We therefore expect 0.1% of the stars to
be false matches. These numbers are upper limits, as the
nearest-neighbour scheme employed reduces contamination
beyond the radius of the true match separation for each star.
We conclude that we cannot explain the distribution wings
with uncorrelated star contamination.
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Figure 2. The e↵ects of proper motions on WISE-TGAS matches
with WISE astrometric uncertainty � = 0.039±0.001”. The distri-
bution of separations, corrected for proper motion during the five
year gap between observations, is shown as a solid black line.
These are compared to the expected Gaussian of uncertainty
� = 0.039”, shown in the red dashed line. The proper motion
correction fails to account for most of the matches seen at large
separations in the non-Gaussian tail.

5 EXPLAINING THE DISTRIBUTION WINGS

5.1 Star Spatial Distributions

To explain the distribution of matches between two cata-
logues, it is illuminating to consider a Gaia source of mag-
nitude 15  G  15.25. We can find the o↵sets from this star
to all WISE objects with radial o↵set <30”. Repeating this
calculation for all such stars in a 25 square degree region of
the Galactic plane at 120  l  125, 0  b  5 we build up a
density of WISE sources astrometrically near Gaia sources
in a narrow Gaia magnitude range as a function of radial
distance, shown in Figure 3.

There are three distinct regions. First, beyond 10” from
the Gaia objects we have a constant density of sources,
which are uncorrelated, additional WISE objects. Second,
we have a tight clustering of detections inside r . 2”, which
are the WISE detections corresponding to our Gaia objects.
Third, we have a region 2” . r . 10” where we see randomly
placed objects at a lower density than those at larger r.

However, non-match stars - those in the WISE cata-
logue whose G magnitude would lie outside of our 0.25 mag-
nitude range - are not correlated with those stars that do lie
in that small magnitude range. We therefore expect them to
have a constant stellar density across the entire sky, meaning
that between 2” and 10” radial distance we should see the
same density of objects in some small area as we do beyond
10”. This apparent reduction in stellar density is caused by
crowding, a well known issue where bright sources dominate
and cause non-detections of fainter objects inside their PSF,
reducing the number of objects measured at these interme-
diate distances.

The important point to stress here is that these stars
have not gone away - they are merely absorbed into the PSF
of the bright star. This causes flux contamination, which will
compromise the photometry. However, since the vast major-

MNRAS 000, 1–10 (2017)

• Why Wise?  Comparable to single visit LSST.
• Gaia DR1 vs WISE.
• Long, non-Gaussian tail.



Hypothesis - stars Hiding in the PSF-
the astrometric tug

• WISE PSF is 6” (in shorter bands).
• Star 4” away, 20x (3 mags) fainter.
• Gives 0.2” disturbance.Contamination in Catalogue Cross-Matching 5

Figure 3. Figure showing the spatial separation of all WISE stars
within 30” of Gaia sources 15  G  15.25, for a 5� ⇥5� slice of the
Galactic plane. Background sources are seen at a constant density
surrounding a clump of counterpart stars in the centre. However,
the background density decreases within . 10” due to the crowd-
ing out of the fainter background sources by bright counterparts.

ity of the contaminating sources will be objects significantly
fainter than the main detection, with a low relative flux ra-
tio, the photometric e↵ect is small.

5.2 Contaminant Stars

More crucial, however, is the e↵ect these sources have on
the derived positions. Figure 4 shows an example schematic.
A Gaia source and its true WISE match are o↵set by some
small distance - on the order of tenths of arcseconds - but
there lies inside the ' 10” WISE PSF a second, undetected
source with a tenth of the flux of the primary source, at ' 3”.
This will tug on the position of the WISE primary by 0.3”,
changing the apparent separation between the WISE ob-
ject(s) and the Gaia object. The distribution of separations
- which we would wish to use for any probabilistic catalogue
matching - is then a combination of two functions: the ini-
tial Gaussian-based statistics and the e↵ects of undetected,
embedded, contaminants.

6 VALIDATION WITH SYNTHETIC
DISTRIBUTIONS

To test the e↵ect these embedded stars could have on the
AUF, we created a synthetic dataset based on simple geo-
metric arguments. First we require the distribution of shifts
that result when stars are contaminated within their PSF.

To obtain the shift distribution, we placed test stars
inside 105 circles of a given sample bright star’s PSF at ran-
dom. These drawings assumed that the number density of

True WISE position

Gaia position

To WISE contaminant

Perturbed WISE position

Figure 4. Figure showing the e↵ect of unresolved contamina-
tion on the measured position. Here, a Gaia object is separated
from its true WISE counterpart by some distance. An undetected
second WISE star within the WISE PSF causes the measured
position to be shifted, causing a di↵erent separation to be cal-
culated. This leads to a distribution of separations that is not
merely based on Gaussian statistics.

stars increases by a factor of z = 2 with every step in magni-
tude. We then found the flux-weighted position of the stars
in each PSF. Once all test contaminants had been drawn,
the number of new positions in each given distance bin was
recorded. Finally, the distribution was reduced to a proba-
bility density function by normalising.

We convolved the resultant function with a Rayleigh
distribution of � = 0.05⇥FWHM, representing a star
with SNR=20. The results of this are shown in Figure
5, for several bright stars with increasing magnitudes,
representing increasing number densities of sky objects.
The convolved functions still resemble the “pure” AUF
in the inner region of the PSF, albeit with a broadened
equivalent astrometric uncertainty, but the contamination
also introduces a very long tail of separations. These
objects are flux contaminated enough to introduce o↵sets
on the order of 0.3-0.4⇥FWHM. This e↵ect increases as the
number density of objects increases, representing increased
large separation contamination.

In summary, we suggest that the e↵ect of astrometri-
cally perturbed sources leading to large wings in distribu-
tions of counterpart distances, seen in the number of astro-
metric separations as a function of distance, is caused by
the crowding out of fainter objects in the PSF. This leads to
that fraction of stars - a very large fraction in regions of high
stellar density, faint magnitudes, or large PSFs - with con-
taminant stars buried in their PSF exhibiting significantly
non-Gaussian distributions in their detected positions. This
will cause additional missed proximity matches if using a
cuto↵ radius on the order of 1-2”. It will also cause the re-

MNRAS 000, 1–10 (2017)

Picture Credit: Damen



Simulation

• Assume no deblending.
• Nicely puts in non-Gaussian tail, which increases as stars get fainter.

Making	Cross	Matching	Possible	at	LSST	Photometric	Depths	

undetected	faint	stars	in	the	PSFs	of	
brighter	 stars	 will	 “tug”	 the	
astrometric	position	of	the	brighter	
star,	so	that	the	difference	between	
its	true	and	measured	positions	can	
be	 far	 larger	 than	 the	 nominal	
astrometric	uncertainties.	
	
This	is	illustrated	in	Figure	1,	where	
the	dotted	lines	show	the	expected	
1D	 (radial)	 distribution	 of	
counterpart	 separations	 for	 WISE-
Gaia	 matches	 assuming	 the	
counterparts	are	distributed	as	a	2D	
Gaussian	 with	 the	 uncertainties	
given	 by	 the	WISE	 catalogue.	 	 The	
error	 bars	 show	 the	 true	

distribution,	which	has	a	long	tail	to	
large	separations.		As	a	result,	using	
the	 formal	 Gaussian	 astrometric	
uncertainties	 in	 the	 Galactic	 Plane	
loses	 about	 50%	 of	 the	 true	
counterparts.	 The	 contaminating	
stars	 causing	 the	 problem	 can	 be	
very	 faint;	so	 faint	 that	 they	would	
lie	 below	 the	 survey	 completeness	
limit	even	if	there	were	not	a	bright	
star	there.	

	
Crowding	in	the	Galactic	Plane	(in	terms	of	stars	per	PSF)	is	very	similar	for	LSST	single	visits	and	WISE,	
so	 astrometric	 tug	 will	 be	 a	 serious	 problem	 for	 LSST.	 	 We	 can	 estimate	 how	 widespread	 in	 the	
following	way,	given	the	caveat	that	it	depends	on	what	fraction	of	stars	have	counterparts,	and	how	
source	counts	extrapolate	 to	 faint	magnitudes,	which	we	cannot	know	until	we	carry	out	 the	work	
proposed	 here.	 	 If	 we	 examine	 a	 field	 at	 at	 l=30°,	 b=–5°	 we	 are	 just	 inside	 the	 area	 of	 the	 plane	
covered	 at	 the	 shallower	 depth	 in	 the	 current	 scheduling	models,	 i.e.	 in	 one	 of	 the	 lower	 density	
areas	of	 the	plane	 survey.	 	Here	we	estimate	 from	TRILEGAL	 (Girardi	 et	 al	 2012	ASSP	26	165)	 that	
roughly	a	third	of	counterparts	will	be	missed	by	conventional	Bayesian	matching	(i.e.	using	Gaussian	
uncertainties);	 the	 rest	 of	 the	 plane	 and	 some	 regions	 of	 the	 Magellanic	 Clouds	 will	 probably	 be	
worse.		Move	to	l=30°,	b=–10°	and	the	stellar	density	decreases,	but	the	survey	depth	increases	by	a	
magnitude,	yielding	5	to	10	percent	missed	matches.		I.e.	significant	areas	outside	the	plane	will	also	
be	badly	affected	by	astrometric	tugging.	
	
Solving	the	astrometric	 tug	problem	will	be	a	unique	UK	contribution,	since	neither	Dave	Monet	or	
Robert	Lupton	know	of	anyone	else	working	on	it.		It	has	been	discussed	both	at	the	UK	Local	Volume	
Meeting	in	June	2017,	and	at	an	LSST	Milky	Way	Collaboration	telecon,	where	it	was	felt	the	issue	had	
to	be	explored.		Furthermore,	whilst	the	focus	of	this	proposal	is	solving	the	astrometric	tug	problem	
for	cross	matching,	our	solution	will	carry	over	to	both	proper	motions	and	parallaxes	for	faint	stars.		
	
Using	 the	 photometric	 information.	Were	we	 to	 implement	 the	 simple	 Bayesian	matching	 outlined	

Figure	1.	 	The	underestimation	of	the	astrometric	uncertainty	
due	 to	 crowding.	 	 This	 figure	 compares	 the	 quoted	 WISE	
uncertainties	(black	dotted	line)	with	the	actual	distribution	of	
counterparts	 as	 a	 function	 of	 distance	 between	 star	 and	
counterpart	 in	a	crowded	region	(black	error	bars).	 	The	solid	
black	 line	 is	 a	 model	 of	 the	 astrometric	 uncertainties	 which	
includes	 the	effect	of	 contamination,	which	produces	 the	 long	
wing	 to	 the	 distribution.	 	 The	 red	 coloured	 data	 are	 from	 a	
somewhat	less-crowded	region,	and	demonstrate	how	the	true	
astrometric	 uncertainties	 in	 less	 crowded	 regions	 tend	
towards	the	uncrowded	model.	
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The Plan

1. Use Bayesian matching – decreases area 
searched by factors of >100.

2. Allow for ”astrometric tug”.
Model also useful for moving objects.
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Figure 7. The number density of matched objects between Gaia and WISE using probability-based matching that includes the e↵ect
of crowding in the AUF for a 42 square degree region of the Galactic plane. Figure layout and colourbar are the same as Figure 1.
The empirical WISE AUF results in a much more complete counterpart return rate, recovering more counterparts than the nearest
neighbour-based match at G ' 18. It still rejects faint matches G � 20 as required.

previously; see Section 4.2.1 for discussion of the e↵ect this
has on the matches obtained.

Matching the same catalogues as described in Section
2.2, the results of using the new PDF for our G are shown
in Figure 7, again accepting only matches with P � 0.5.
We now recover the vast majority of our nearest neighbour-
based counterparts. We also see a reduction of the number
of faint (Gaia G � 20, bottom of right inset panel) counter-
parts, when compared with the nearest neighbour matches,
as expected. However, the objects recovered and rejected at
the varying brightnesses in both the Gaia and WISE pass-
bands require more detailed examination.

We therefore now consider the number of objects gained
or lost by the probability-based matching process relative
to the 3” nearest neighbour match, as shown in Figure 8.
The first point of interest is that over much of the area
occupied by bright (W1  15) matches there is a rejection of
approximately 1-5% of the matches, similar to the number
of false positives (see Section 2.2). This indicates that our
new AUF is still rejecting false matches, as expected.

At faint magnitudes (W1 ' 15) there are two distinct
regions of the magnitude-magnitude space. The first, at
G ' 18, is an area where extra pairings are picked up by the
probability-based matching, which were not picked up by
our nearest neighbour match. These are most likely objects

which were astrometrically perturbed beyond our nearest
neighbour cuto↵ radius, and therefore unable to be paired
in the nearest neighbour match. The contamination at this
magnitude is most likely to cause astrometric shifts which
result in separations between Gaia and WISE source detec-
tions beyond the 3” nearest neighbour match radius (Wil-
son & Naylor 2017). However, some of them could also be
objects where the pair most favourable was not the clos-
est. These objects would favour brighter, but further away,
matches rather than some fainter, but closer, stars. This
can be caused either by the brighter source having a larger
absolute distance but smaller Mahalanobis distance, due to
its smaller astrometric uncertainties, or by the photomet-
ric counterpart likelihood favouring the bright source over
the faint object. The second region of interest, at fainter
Gaia magnitudes (G ' 20), sees a loss of matches compared
with nearest neighbour match for the same WISE brightness
(W1 ' 15). These could be the rejected faint nearest neigh-
bour matches for the additional probability-based matches
seen at G ' 18. However, a fraction of these lost, faint Gaia
matches are WISE objects which should match to Gaia ob-
jects below the sensitivity level of the survey, which are co-
incidentally near to these objects of G ' 20 whose corre-
sponding WISE object was removed from our catalogue in
the process of cleaning poor quality data (see Table 2). This
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The Plan

1. Use Bayesian matching – decreases area 
searched by factors of >100.

2. Allow for ”astrometric tug”.
Model also useful for moving objects.

3. Add in photometric information – improves 
Bayes factors by an order of magnitude.



Column Name FITS Name Description
Match Probability MATCH_P Probability of match
η ETA Photometric logarithmic likelihood ratio
ξ XI Astrometric logarithmic likelihood ratio
1% Contamination Probability CONT_P1 Probability of source having contaminant 

of at least 1% relative
flux given its separation from its 
corresponding Gaia detection.

10% Contamination Probability CONT_P10 Ditto at 10%.

Average Contamination AVG_CONT Mean contaminating relative flux for 
local field



Conclusions
• LSST positions will be affected by contamination from 

fainter stars.
• In galactic plane this is estimated to be as bad as WISE, i.e. 

dominant
– (though the numbers are very uncertain). 

• Bad news.
– It will affect ability to identify faint progenitors.
– It will affect proper motions, and be really bad if we use 

different spatial resolution surveys to get baseline.
• Good news.

– We can cure this, either as a matching tool, or catalogues of 
matches.  

– Data fusion will then provide best magnitudes.


