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In the mid-1960s, gamma-ray bursts (GRBs) were discovered
by the Vela satellites, and their cosmic origin was first established
by Klebesadel et al. (1973). GRBs are classified as long or short,
based on their duration and spectral hardness(Dezalay et al. 1992;
Kouveliotou et al. 1993). Uncovering the progenitors of GRBs
has been one of the key challenges in high-energy astrophysics
ever since(Lee & Ramirez-Ruiz 2007). It has long been
suggested that short GRBs might be related to neutron star
mergers (Goodman 1986; Paczynski 1986; Eichler et al. 1989;
Narayan et al. 1992).

In 2005, the field of short gamma-ray burst (sGRB) studies
experienced a breakthrough (for reviews see Nakar 2007; Berger
2014) with the identification of the first host galaxies of sGRBs
and multi-wavelength observation (from X-ray to optical and
radio) of their afterglows (Berger et al. 2005; Fox et al. 2005;
Gehrels et al. 2005; Hjorth et al. 2005b; Villasenor et al. 2005).
These observations provided strong hints that sGRBs might be
associated with mergers of neutron stars with other neutron stars
or with black holes. These hints included: (i) their association with
both elliptical and star-forming galaxies (Barthelmy et al. 2005;
Prochaska et al. 2006; Berger et al. 2007; Ofek et al. 2007; Troja
et al. 2008; D’Avanzo et al. 2009; Fong et al. 2013), due to a very
wide range of delay times, as predicted theoretically(Bagot et al.
1998; Fryer et al. 1999; Belczynski et al. 2002); (ii) a broad
distribution of spatial offsets from host-galaxy centers(Berger
2010; Fong & Berger 2013; Tunnicliffe et al. 2014), which was
predicted to arise from supernova kicks(Narayan et al. 1992;
Bloom et al. 1999); and (iii) the absence of associated
supernovae(Fox et al. 2005; Hjorth et al. 2005c, 2005a;
Soderberg et al. 2006; Kocevski et al. 2010; Berger et al.
2013a). Despite these strong hints, proof that sGRBs were
powered by neutron star mergers remained elusive, and interest
intensified in following up gravitational-wave detections electro-
magnetically(Metzger & Berger 2012; Nissanke et al. 2013).

Evidence of beaming in some sGRBs was initially found by
Soderberg et al. (2006) and Burrows et al. (2006) and confirmed

by subsequent sGRB discoveries (see the compilation and
analysis by Fong et al. 2015 and also Troja et al. 2016). Neutron
star binary mergers are also expected, however, to produce
isotropic electromagnetic signals, which include (i) early optical
and infrared emission, a so-called kilonova/macronova (hereafter
kilonova; Li & Paczyński 1998; Kulkarni 2005; Rosswog 2005;
Metzger et al. 2010; Roberts et al. 2011; Barnes & Kasen 2013;
Kasen et al. 2013; Tanaka & Hotokezaka 2013; Grossman et al.
2014; Barnes et al. 2016; Tanaka 2016; Metzger 2017) due to
radioactive decay of rapid neutron-capture process (r-process)
nuclei(Lattimer & Schramm 1974, 1976) synthesized in
dynamical and accretion-disk-wind ejecta during the merger;
and (ii) delayed radio emission from the interaction of the merger
ejecta with the ambient medium (Nakar & Piran 2011; Piran et al.
2013; Hotokezaka & Piran 2015; Hotokezaka et al. 2016). The
late-time infrared excess associated with GRB 130603B was
interpreted as the signature of r-process nucleosynthesis (Berger
et al. 2013b; Tanvir et al. 2013), and more candidates were
identified later (for a compilation see Jin et al. 2016).
Here, we report on the global effort958 that led to the first joint

detection of gravitational and electromagnetic radiation from a
single source. An ∼ 100 s long gravitational-wave signal
(GW170817) was followed by an sGRB (GRB 170817A) and
an optical transient (SSS17a/AT 2017gfo) found in the host
galaxy NGC 4993. The source was detected across the
electromagnetic spectrum—in the X-ray, ultraviolet, optical,
infrared, and radio bands—over hours, days, and weeks. These
observations support the hypothesis that GW170817 was
produced by the merger of two neutron stars in NGC4993,
followed by an sGRB and a kilonova powered by the radioactive
decay of r-process nuclei synthesized in the ejecta.

Figure 1. Localization of the gravitational-wave, gamma-ray, and optical signals. The left panel shows an orthographic projection of the 90% credible regions from
LIGO (190 deg2; light green), the initial LIGO-Virgo localization (31 deg2; dark green), IPN triangulation from the time delay between Fermi and INTEGRAL (light
blue), and Fermi-GBM (dark blue). The inset shows the location of the apparent host galaxy NGC 4993 in the Swope optical discovery image at 10.9 hr after the
merger (top right) and the DLT40 pre-discovery image from 20.5 days prior to merger (bottom right). The reticle marks the position of the transient in both images.

958 A follow-up program established during initial LIGO-Virgo observations
(Abadie et al. 2012) was greatly expanded in preparation for Advanced LIGO-
Virgo observations. Partners have followed up binary black hole detections,
starting with GW150914 (Abbott et al. 2016a), but have discovered no firm
electromagnetic counterparts to those events.
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The 90% credible intervals(Veitch et al. 2015; Abbott et al.
2017e) for the component masses (in the m m1 2. convention)
are m M1.36, 2.261 Î :( ) and m M0.86, 1.362 Î :( ) , with total
mass M2.82 0.09

0.47
-
+

:, when considering dimensionless spins with

magnitudes up to 0.89 (high-spin prior, hereafter). When the
dimensionless spin prior is restricted to 0.05- (low-spin prior,
hereafter), the measured component masses are m 1.36,1 Î (

M1.60 :) and m M1.17, 1.362 Î :( ) , and the total mass is

Figure 2. Joint, multi-messenger detection of GW170817 and GRB170817A. Top: the summed GBM lightcurve for sodium iodide (NaI) detectors 1, 2, and 5 for
GRB170817A between 10 and 50 keV, matching the 100 ms time bins of the SPI-ACS data. The background estimate from Goldstein et al. (2016) is overlaid in red.
Second: the same as the top panel but in the 50–300 keV energy range. Third: the SPI-ACS lightcurve with the energy range starting approximately at 100 keV and
with a high energy limit of least 80 MeV. Bottom: the time-frequency map of GW170817 was obtained by coherently combining LIGO-Hanford and LIGO-
Livingston data. All times here are referenced to the GW170817 trigger time T0

GW.
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Luminosity distance: 40 Mpc
From Abbott et al, “Multi-messenger Observations of a Binary Neutron Star Merger”

From Abbott et al, “Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A”
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3.1. Asymmetric Model

In addition to the spherically symmetric assumption in the
previous section we also explore a simple asymmetric model in
which the blue component is confined to the polar regions,
while the red component (and purple component in the three-
component model) are confined to an equatorial torus. Such a
model is seen in numerical simulations (see, e.g., Metzger &
Fernández 2014; Metzger 2017). We implement this asym-
metric distribution by correcting the bolometric flux of each
component by a geometric factor: q-( )1 cos for the blue
component and qcos for the red/purple component, where θ is
the half-opening angle of the blue component. Although this
model neglects other important contributions such as changes
in diffusion timescale, effective blackbody temperature, or
angle dependence, it roughly captures a first-order correction to
the assumption of spherical symmetry.

3.2. Fitting Procedure

We model the combined data set using the light curve fitting
package MOSFiT (Guillochon et al. 2017a; Nicholl et al. 2017;
Villar et al. 2017), which uses an ensemble-based Markov
Chain Monte Carlo method to produce posterior predictions
for the model parameters. The functional form of the

log-likelihood is

$ å
s s

ps ps= -
-
+

- -
=

⎡
⎣⎢

⎤
⎦⎥

( ) ( ) ( )

( )

O M n
ln

1
2

ln 2
2

ln 2 ,

6
i

n
i i

i
i

1

2

2 2
2 2

where Oi, Mi, and si, are the ith of n observed magnitudes,
model magnitudes, and observed uncertainties, respectively.
The variance parameter σ is an additional scatter term, which
we fit, that encompasses additional uncertainty in the models
and/or data. For upper limits, we use a one-sided Gaussian
penalty term.
For each component of our model there are four free

parameters: ejecta mass (Mej), ejecta velocity (vej), opacity (κ),
and the temperature floor (Tc). We use flat priors for the first
three parameters, and a log-uniform prior for Tc (which is the
only parameter for which we consider several orders of
magnitude). In the case of the asymmetric model, we assume a
flat prior for the half-opening angle (θ).
For each model, we ran MOSFiT for approximately 24 hr

using 10 nodes on Harvard University’s Odyssey computer
cluster. We utilized 100 chains until they reached convergence
(i.e., had a Gelman–Rubin statistic <1.1; Gelman &
Rubin 1992). We use the first �80 % of the chain as burn-in.
We compare the resulting fits utilizing the Watanabe–Akaike
Information Criteria (WAIC; Watanabe 2010; Gelman
et al. 2014), which accounts for both the likelihood score and
number of fitted parameters for each model.

4. Results of the Kilonova Models

We fit three different models to the data: a spherical two-
component model, a spherical three-component model, and an
asymmetric three-component model. The results are shown in
Figures 1–5 and summarized in Table 2.

Figure 1. UVOIR light curves from the combined data set (Table 3), along with the spherically symmetric three-component models with the highest likelihood scores.
Solid lines represent the realizations of highest likelihood for each filter, while shaded regions represent the s1 uncertainty ranges. For some bands there are multiple
lines that capture subtle differences between filters. Data originally presented in Andreoni et al. (2017), Arcavi et al. (2017), Coulter et al. (2017), Cowperthwaite et al.
(2017), Díaz et al. (2017), Drout et al. (2017), Evans et al. (2017), Hu et al. (2017), Kasliwal et al. (2017), Lipunov et al. (2017), Pian et al. (2017), Pozanenko et al.
(2017), Shappee et al. (2017), Smartt et al. (2017), Tanvir et al. (2017), Troja et al. (2017), Utsumi et al. (2017), and Valenti et al. (2017b).
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Science from joint  
GW-EM observations

• Definitive association of short GRB and kilonova with neutron star 
mergers (and NS-BH?) 

• Understanding the emission as a function of the binary mass and 
orientation 

• Study r-process nucleosynthesis and heavy element formation 

• Probe neutron star structure, equation of state of dense nuclear 
matter  

• Hubble constant measurement through independent distance (GW) 
and redshift (EM) measurement 

• Possible unexpected GW transients
 4



Gravitational wave localisation
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In the mid-1960s, gamma-ray bursts (GRBs) were discovered
by the Vela satellites, and their cosmic origin was first established
by Klebesadel et al. (1973). GRBs are classified as long or short,
based on their duration and spectral hardness(Dezalay et al. 1992;
Kouveliotou et al. 1993). Uncovering the progenitors of GRBs
has been one of the key challenges in high-energy astrophysics
ever since(Lee & Ramirez-Ruiz 2007). It has long been
suggested that short GRBs might be related to neutron star
mergers (Goodman 1986; Paczynski 1986; Eichler et al. 1989;
Narayan et al. 1992).

In 2005, the field of short gamma-ray burst (sGRB) studies
experienced a breakthrough (for reviews see Nakar 2007; Berger
2014) with the identification of the first host galaxies of sGRBs
and multi-wavelength observation (from X-ray to optical and
radio) of their afterglows (Berger et al. 2005; Fox et al. 2005;
Gehrels et al. 2005; Hjorth et al. 2005b; Villasenor et al. 2005).
These observations provided strong hints that sGRBs might be
associated with mergers of neutron stars with other neutron stars
or with black holes. These hints included: (i) their association with
both elliptical and star-forming galaxies (Barthelmy et al. 2005;
Prochaska et al. 2006; Berger et al. 2007; Ofek et al. 2007; Troja
et al. 2008; D’Avanzo et al. 2009; Fong et al. 2013), due to a very
wide range of delay times, as predicted theoretically(Bagot et al.
1998; Fryer et al. 1999; Belczynski et al. 2002); (ii) a broad
distribution of spatial offsets from host-galaxy centers(Berger
2010; Fong & Berger 2013; Tunnicliffe et al. 2014), which was
predicted to arise from supernova kicks(Narayan et al. 1992;
Bloom et al. 1999); and (iii) the absence of associated
supernovae(Fox et al. 2005; Hjorth et al. 2005c, 2005a;
Soderberg et al. 2006; Kocevski et al. 2010; Berger et al.
2013a). Despite these strong hints, proof that sGRBs were
powered by neutron star mergers remained elusive, and interest
intensified in following up gravitational-wave detections electro-
magnetically(Metzger & Berger 2012; Nissanke et al. 2013).

Evidence of beaming in some sGRBs was initially found by
Soderberg et al. (2006) and Burrows et al. (2006) and confirmed

by subsequent sGRB discoveries (see the compilation and
analysis by Fong et al. 2015 and also Troja et al. 2016). Neutron
star binary mergers are also expected, however, to produce
isotropic electromagnetic signals, which include (i) early optical
and infrared emission, a so-called kilonova/macronova (hereafter
kilonova; Li & Paczyński 1998; Kulkarni 2005; Rosswog 2005;
Metzger et al. 2010; Roberts et al. 2011; Barnes & Kasen 2013;
Kasen et al. 2013; Tanaka & Hotokezaka 2013; Grossman et al.
2014; Barnes et al. 2016; Tanaka 2016; Metzger 2017) due to
radioactive decay of rapid neutron-capture process (r-process)
nuclei(Lattimer & Schramm 1974, 1976) synthesized in
dynamical and accretion-disk-wind ejecta during the merger;
and (ii) delayed radio emission from the interaction of the merger
ejecta with the ambient medium (Nakar & Piran 2011; Piran et al.
2013; Hotokezaka & Piran 2015; Hotokezaka et al. 2016). The
late-time infrared excess associated with GRB 130603B was
interpreted as the signature of r-process nucleosynthesis (Berger
et al. 2013b; Tanvir et al. 2013), and more candidates were
identified later (for a compilation see Jin et al. 2016).
Here, we report on the global effort958 that led to the first joint

detection of gravitational and electromagnetic radiation from a
single source. An ∼ 100 s long gravitational-wave signal
(GW170817) was followed by an sGRB (GRB 170817A) and
an optical transient (SSS17a/AT 2017gfo) found in the host
galaxy NGC 4993. The source was detected across the
electromagnetic spectrum—in the X-ray, ultraviolet, optical,
infrared, and radio bands—over hours, days, and weeks. These
observations support the hypothesis that GW170817 was
produced by the merger of two neutron stars in NGC4993,
followed by an sGRB and a kilonova powered by the radioactive
decay of r-process nuclei synthesized in the ejecta.

Figure 1. Localization of the gravitational-wave, gamma-ray, and optical signals. The left panel shows an orthographic projection of the 90% credible regions from
LIGO (190 deg2; light green), the initial LIGO-Virgo localization (31 deg2; dark green), IPN triangulation from the time delay between Fermi and INTEGRAL (light
blue), and Fermi-GBM (dark blue). The inset shows the location of the apparent host galaxy NGC 4993 in the Swope optical discovery image at 10.9 hr after the
merger (top right) and the DLT40 pre-discovery image from 20.5 days prior to merger (bottom right). The reticle marks the position of the transient in both images.

958 A follow-up program established during initial LIGO-Virgo observations
(Abadie et al. 2012) was greatly expanded in preparation for Advanced LIGO-
Virgo observations. Partners have followed up binary black hole detections,
starting with GW150914 (Abbott et al. 2016a), but have discovered no firm
electromagnetic counterparts to those events.
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Fig. 4 Source localization by timing triangulation for the aLIGO–AdV network. The locations of the three
detectors are indicated by black dots, with LIGO Hanford labeled H, LIGO Livingston as L, and Virgo as
V. The locus of constant time delay (with associated timing uncertainty) between two detectors forms an
annulus on the sky concentric about the baseline between the two sites (labeled by the two detectors). For
three detectors, these annuli may intersect in two locations. One is centered on the true source direction
(S), while the other (S′) is its mirror image with respect to the geometrical plane passing through the three
sites. For four or more detectors there is a unique intersection region of all of the annuli. Image adapted
from Chatterji et al. (2006)

Fig. 5. The posterior probability distribution is primarily distributed along a ring, but
this ring is broken, such that there are clear maxima.

For three detectors, the time delays restrict the source to two sky regions which
are mirror images with respect to the plane passing through the three sites. It is
often possible to eliminate one of these regions by requiring consistent amplitudes
in all detectors (Fairhurst 2017). For signals just above the detection threshold, this
typically yields regions with areas of several tens to hundreds of square degrees.
If there is significant difference in sensitivity between detectors, the source is
less well localized and we may be left with the majority of the annulus on the
sky determined by the two most sensitive detectors. With four or more detec-
tors, timing information alone is sufficient to localize to a single sky region, and
the additional baselines help to limit the region to under 10 deg2 for some sig-
nals.

From Eq. (1), it follows that the linear size of the localization ellipse scales inversely
with the SNR of the signal and the frequency bandwidth of the signal in the detec-
tor (Berry et al. 2015). For GWs that sweep across the band of the detector, such as
CBC signals, the effective bandwidth is ∼ 100 Hz, determined by the most sensitive
frequencies of the detector. Higher mass CBC systems merge at lower frequencies and
so have a smaller effective bandwidth. For burst transients, the bandwidth σ f depends
on the specific signal. For example, GWs emitted by various processes in core-collapse
supernovae are anticipated to have relatively large bandwidths, between 150 Hz and
500 Hz (Dimmelmeier et al. 2008; Ott 2009; Yakunin et al. 2010; Ott et al. 2011),
largely independent of detector configuration. By contrast, the sky localization region
for narrowband burst signals may consist of multiple disconnected regions and exhibit
fringing features; see, for example, Klimenko et al. (2011), Abadie et al. (2012c),
Essick et al. (2015).
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Sensitivity Evolution
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Fig. 2 The planned sensitivity evolution and observing runs of the aLIGO, AdV and KAGRA detectors
over the coming years. The colored bars show the observing runs, with the expected sensitivities given
by the data in Fig. 1 for future runs, and the achieved sensitivities in O1 and in O2. There is significant
uncertainty in the start and end times of planned the observing runs, especially for those further in the future,
and these could move forward or backwards relative to what is shown above. The plan is summarised in
Sect. 2.2

2016–2017 (O2) A nine-month run with H1L1, joined by V1 for the final month.
O2 began on 30 November 2016, with AdV joining 1 August 2017 and ended
on 25 August 2017. The expected aLIGO range was 80–120 Mpc, and the
achieved range was in the region of 60–100 Mpc; the expected AdV range was
20–65 Mpc, and the initial range was 25–30 Mpc.

2018–2019 (O3) A year-long run with H1L1 at 120–170 Mpc and with V1 at
65–85 Mpc beginning about a year after the end of O2.

2020+ Three-detector network with H1L1 at full sensitivity of 190 Mpc and V1
at 65–115 Mpc, later increasing to design sensitivity of 125 Mpc.

2024+ H1L1V1K1I1 network at full sensitivity (aLIGO at 190 Mpc, AdV at
125 Mpc and KAGRA at 140 Mpc). Including more detectors improves sky
localization (Klimenko et al. 2011; Veitch et al. 2012; Nissanke et al. 2013;
Rodriguez et al. 2014; Pankow et al. 2018) as well as the fraction of coincident
observational time. 2024 is the earliest time we imagine LIGO-India could be
operational.

This timeline is summarized in Fig. 2; we do not include observing runs with LIGO-
India yet, as these are still to be decided. Additionally, GEO 600 will continue
observing, with frequent commissioning breaks, during this period. The observational
implications of these scenarios are discussed in Sect. 4.
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Table 3 Summary of a plausible observing schedule, expected sensitivities, and source localization with
the Advanced LIGO, Advanced Virgo and KAGRA detectors, which will be strongly dependent on the
detectors’ commissioning progress

Epoch 2015 – 2016 2016 – 2017 2018 – 2019 2020+ 2024+

Planned run duration 4 months 9 months 12 months (per year) (per year)

Expected burst range/Mpc LIGO 40 – 60 60–75 75–90 105 105

Virgo – 20–40 40–50 40–70 80

KAGRA – – – – 100

Expected BNS range/Mpc LIGO 40–80 80–120 120–170 190 190

Virgo – 20–65 65–85 65–115 125

KAGRA – – – – 140

Achieved BNS range/Mpc LIGO 60–80 60–100 – – –

Virgo – 25–30 – – –

KAGRA – – – – –

Estimated BNS detections 0.05–1 0.2–4.5 1–50 4–80 11–180

Actual BNS detections 0 1 – – –

90% CR % within 5 deg2 < 1 1–5 1–4 3–7 23–30

20 deg2 < 1 7–14 12–21 14–22 65–73

Median/deg2 460–530 230–320 120–180 110–180 9–12

Searched area % within 5 deg2 4–6 15–21 20–26 23–29 62–67

20 deg2 14–17 33–41 42–50 44–52 87–90

Ranges reflect the uncertainty in the detector noise spectra shown in Fig. 1. The burst ranges assume standard-
candle emission of 10−2 M⊙c2 in gravitational waves at 150 Hz and scale as E1/2

GW, so it is greater for more
energetic sources (such as binary black holes). The binary neutron star (BNS) localization is characterized
by the size of the 90% credible region (CR) and the searched area. These are calculated by running the
BAYESTAR rapid sky-localization code (Singer and Price 2016) on a Monte Carlo sample of simulated
signals, assuming senisivity curves in the middle of the plausible ranges (the geometric means of the upper
and lower bounds). The variation in the localization reflects both the variation in duty cycle between 70%
and 75% as well as Monte Carlo statistical uncertainty. The estimated number of BNS detections uses
the actual ranges for 2015–2016 and 2017–2018, and the expected range otherwise; future runs assume a
70–75% duty cycle for each instrument. The BNS detection numbers also account for the uncertainty in the
BNS source rate density (Abbott et al. 2017i). Estimated BNS detection numbers and localization estimates
are computed assuming a signal-to-noise ratio greater than ∼ 12. Burst localizations are expected to be
broadly similar to those derived from timing triangulation, but vary depending on the signal bandwidth;
the median burst searched area (with a false alarm rate of ∼ 1 yr−1) may be a factor of ∼ 2–3 larger than
the values quoted for BNS signals (Essick et al. 2015). No burst detection numbers are given, since the
source rates are currently unknown. Localization numbers for 2016–2017 include Virgo, and do not take
into account that Virgo only joined the observations for the latter part the run. The 2024+ scenario includes
LIGO-India at design sensitivity

an individual duty cycle of 70–75%. The results are calculated using bayestar. The
median 90% credible region is 230–320 deg2, and 7–13% of events are expected to
have CRBNS

0.9 smaller than 20 deg2. The searched area is smaller than 20 deg2 for 33–
41% of events and smaller than 5 deg2 for 16–21%. The burst study (Essick et al. 2015)
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Towards a 5-detector network
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Introduction
The past three years have witnessed the birth of observational gravitational-wave astronomy,

starting with the first detection of a binary black hole merger on September 14 2015 [1], followed
by discoveries of nine more in the first and second LIGO/Virgo Observing runs [2], and the spec-
tacular multi-messenger observation of a merger of neutron stars on August 17, 2017 [3, 4].

These detections were enabled by a nearly three decade long effort to build Advanced LIGO
[5] comprising two laser interferometric gravitational-wave detectors with suspended mirrors, laser
beams traveling in vacuum through 4 km perpendicular arms in each detector, to detect sub-nuclear
distance scale changes in distance. The LIGO Scientific Collaboration (LSC) works closely with
the Virgo and KAGRA collaborations operating gravitational-wave detectors in Europe and Japan
to ensure coordinated observations by the global network. In this white paper, we describe plans
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Figure 1: Planned sensitivity evolution and observing runs
of ground-based detectors. Numbers in Mpc indicate aver-
age reach to binary neutron star mergers.

Figure 2: A map of the global ground-based gravitational-
wave detector network.

for gravitational-wave observing campaigns and expected science goals in the coming decade. As
shown in Fig. 1, the Advanced LIGO detectors took data between September 2015 and January
2016 in their first Observing run (O1), and then again with improved sensitivity in O2, between
November 2016 and August 2017. The Virgo detector [6] joined O2 on August 1st 2017, providing
greatly improved sky localization of the detected events. The improved localization and rapid alerts
led to the detection of an electromagnetic counterpart to the binary neutron star merger [3, 4]. This
counterpart, spanning all bands of the electromagnetic spectrum, allowed the first direct association
between a binary neutron star merger and a short gamma-ray burst, and the first unambiguous
identification of a kilonova.

In the next few years, the Advanced LIGO and Virgo detectors will continue to observe and
analyze data together, and are expected to reach the sensitivity to which they were designed [7].
KAGRA [8] is expected to join in the gravitational wave network in 2019. The GEO600 [9]
detector will provide coverage for exceptional events during times when no other detectors will
be operating, and will otherwise concentrate on testing technologies for future detectors [10]. The
greatest scientific return is possible when all operating GW detectors combine their data.

Funding from the US, UK and Australia has been secured for the “A+” detector upgrade [11],
implementing further sensitivity improvements beyond the current Advanced LIGO design. To-
ward the middle of the next decade, a new observatory in India [12] will host an Advanced LIGO
detector to further enhance the network sensitivity. This decade will see an improvement of a fac-
tor of several in astrophysical distance reach, as well as a significant increase in observing time,

1

From LIGO Decadal Submission,  arXiv:1904.03187

http://arxiv.org/abs/arXiv:1904.03187


O3 alerts

 9

https://gracedb.ligo.org/

https://gracedb.ligo.org/


Example: S190425z

 10


