
Using and adapting the
LSST processing pipeline

Lydia Makrygianni & James Mullaney 
+ The GOTO Collaboration

What is the LSST processing pipeline (the Stack)?

• It will deliver LSST’s data products:

- Prompt: Nightly processing; sources that have changed in

brightness/position; catalogues from difference imaging.
- Data Release: Annual release of coherent processing of entire

dataset to date; fluxes, shapes, variability, light curve description.

•Written in:

- Python (high level “calling” scripts)

- C++ (lower level calculations)

•Designed to be a standard processing pipeline for other wide-field
surveys.

Our target audiences

•The Typical User:

- is interested in the standard outputs of the LSST Stack.

•The Advanced User:

- The standard outputs do not meet your scientific
requirements; you want to reconfigure the Stack to
process LSST data to meet your needs.

•The Super Advanced User:

- wants to use the Stack to process data from other
facilities for, e.g., consistent incorporation into LSST
database.

Our experience with the LSST stack

•GOTO: 
Gravitational-wave Optical Transient Observatory*

•Currently 4 x 40cm, 5 sq. deg FOV `scopes on
common mount.

•Conduct high-cadence survey to 20th mag &
follow-up LIGO triggers.

•Total FOV, cadence and desired outputs similar to
LSST.

*Warwick, Monash, Sheffield, Leicester, Armagh, NARIT, IAC, Turku, Manchester

• In addition to in-house pipeline, we’re also using the Stack to process
GOTO data:

- created static coadded images;

- coadds used as reference for nightly forced photometry.

Processes and outputs; Standard Use

Processes and outputs; Standard Use

Calibrated Exposures 
(calexps)Output

•Organises raw input frames (database of image type, date etc);

•Instrument signature removal (i.e., bias, dark, flat correct);

•Background subtraction;

•PSF modelling;

•Astrometric and photometric calibration.

Processes and outputs; Standard Use

•Source detection;

•Photometry (aperture, PSF, Guassian, Kron, CModel, deVauc., etc.);

•Shape measurement; Source catalogues
(src)Output

Calibrated Exposures 
(calexps)Output

•Organises raw input frames (database of image type, date etc);

•Instrument signature removal (i.e., bias, dark, flat correct);

•Background subtraction;

•PSF modelling;

•Astrometric and photometric calibration.

Processes and outputs; Standard Use

•Source detection;

•Photometry (aperture, PSF, Guassian, Kron, CModel, deVauc., etc.);

•Shape measurement; Source catalogues
(src)Output

•Image alignment, warping, coaddition;

•Deep detection, photometry and catalogue merging;

Outputs Coadded exposures
and merged catalogues

Calibrated Exposures 
(calexps)Output

•Organises raw input frames (database of image type, date etc);

•Instrument signature removal (i.e., bias, dark, flat correct);

•Background subtraction;

•PSF modelling;

•Astrometric and photometric calibration.

Processes and outputs; Standard Use

•Source detection;

•Photometry (aperture, PSF, Guassian, Kron, CModel, deVauc., etc.);

•Shape measurement; Source catalogues
(src)Output

•Image alignment, warping, coaddition;

•Deep detection, photometry and catalogue merging;

Outputs Coadded exposures
and merged catalogues

•Forced photometry, difference imaging.
Outputs Nightly forced

photometry and diffims.

Calibrated Exposures 
(calexps)Output

•Organises raw input frames (database of image type, date etc);

•Instrument signature removal (i.e., bias, dark, flat correct);

•Background subtraction;

•PSF modelling;

•Astrometric and photometric calibration.

PSF modelling

•After ISR, the Stack performs a high-level source detection on each
input image and attempts to identify point sources;

• It then uses these point sources to model the PSF across each input
image and records summary statistics of the PSF:

- default model uses Principal Component Analysis (PCA), but other

modules can be implemented (e.g., PSFEx).

• This gives an indication of the image quality in terms of seeing.

Image showing the PSF FWHM
variation over a GOTO exposure.

Coaddition

The depth of the LSST survey is achieved via the coaddition of
multiple epochs of data.

Prior to coaddition, the Stack re-projects calexp images onto a
single sky map (e.g., HEALPix).

Involves warping each calexp onto the sky
map (CPU-intensive & slow).

However, once warped, any combination
of exposures can be combined to produce
a coadd (fast).

HEALPix projection

Quick, flexible coadds

=
For deep coadd:

Add everything

(e.g., low surface
brightness, high-z)

+++

Quick, flexible coadds

=
For deep coadd:

Add everything

(e.g., low surface
brightness, high-z)

+++

For high resolution:

Select best PSF

(e.g., lensing,
crowded fields)

=+++

Quick, flexible coadds

=
For deep coadd:

Add everything

(e.g., low surface
brightness, high-z)

+++

For high resolution:

Select best PSF

(e.g., lensing,
crowded fields)

=+++

To search for faint
changes

Select a date range

=+++

Quick, flexible coadds

=
For deep coadd:

Add everything

(e.g., low surface
brightness, high-z)

+++

For high resolution:

Select best PSF

(e.g., lensing,
crowded fields)

=+++

To search for faint
changes

Select a date range

=+++

“Insert science here”:
 =+++

Coadd bookkeeping

…and each warped science image and coadd comes with its own
variance image to ensure errors are propagated correctly…

Warped and coadded GOTO science image Accompanying variance image

Merged catalogues

Stack runs source detection on each coadd in each band, merges those detections,
attempts to deblend and measure based on all detections in all bands, then selects the
optimum band for each source from which to build a reference for forced photometry.

Reconfiguring the LSST stack: A case study

Deblending
Due to GOTO’s increased pixel
size relative to the LSST, the
Stack’s default deblending
routine was sub-optimal.
Every module in the Stack
comes with its own set of
config parameters, which can
be overridden…

…but some modules contain
thousands of parameters!

Adapting the LSST stack to other surveys

Why bother?

•Consistent data products for ingestion into the LSST database.

•At present, the Stack isn’t set up to take unformatted catalogues
and use them for forced photometry, for example.

If you want to take your NIR survey, for example, and use it as a
basis for forced photometry on LSST data, it’ll need to be re-
formatted or re-processed using the Stack.

Raw data LSST Stackobs_package

Camera
properties

Filesystem Configuration
parametersI/O Format

Bespoke
modules

Bespoke modules: A case study

GOTO’s singleVisitDriver.py
Default module 
(singleFrameDriver)

ISR,
Astrometry,
Model PSF,

Phot. Calibration
Raw Calexp

Deep Coadd

Detection,
Align, Warp,

Coadd

Bespoke modules: A case study

GOTO’s singleVisitDriver.py
Default module 
(singleFrameDriver)

ISR,
Astrometry,
Model PSF,

Phot. Calibration
Raw Calexp

Deep Coadd

Detection,
Align, Warp,

Coadd

Bespoke module 
(singleVisitDriver)

ISR, 
Astrometry,
Warp, Align

ISR, 
Astrometry,
Warp, Align

ISR, 
Astrometry,
Warp, Align

Coadd

Raw

Model PSF,
Phot. Calibration

Forced Phot.

Summary

• As one would expect, the LSST Stack will provide a huge
variety of images and measured parameters.

• However, some questions may benefit from an adaptation
of the stack.

• With well-catalogued image metadata (PSF, date), it will be
possible to produce bespoke coadded data.

• Most aspects of the Stack can be easily reconfigured.

• And, with some effort, new modules can be written to
perform bespoke tasks, including processing non-LSST
data.

