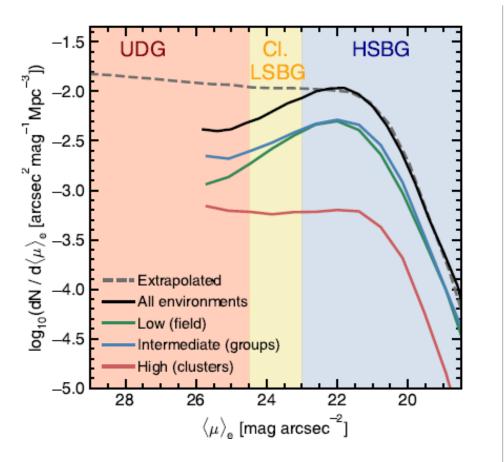
Low-surface-brightness science and machine-learning for morphological analysis in LSST

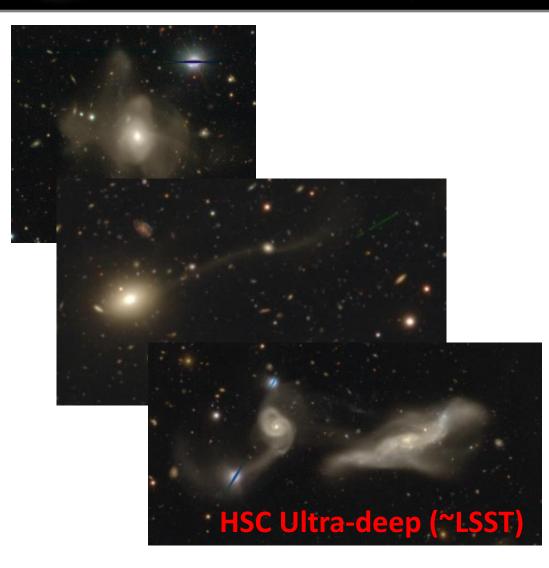
S. Kaviraj, C. Collins, J. Geach, L. Kelvin


LSST:UK All Hands meeting 13 May 2019

Large Synoptic Survey Telescope Galaxies, Dark Matter, and Black Holes: Extragalactic Roadmap

Robertson, Brant¹, Banerji, M.², Cooper, Michael³, Davies, R.⁴, Ferguson, Henry C.⁵, Kaviraj, S.⁶, Lintott, C.⁴, Lotz, J.⁵, Newman, J.⁷, Norman, D.⁸, Padilla, N.⁹, Schmidt, S.¹⁰, Smith, G. P.¹¹, Verma, A.⁴, Working Group Participants, Collaboration Members

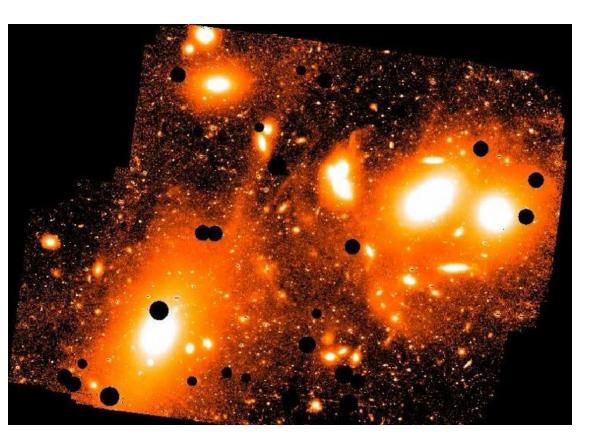
	5.2.5 Disentanging Complicated Lines of Signt	22
	3.2.6 Forward Modeling LSST Clusters and Groups	22
3.3	Deep Drilling Fields	24
	3.3.1 Coordinating Ancillary Observations	24
	3.3.2 Observing Strategy Cadence	25
	3.3.3 Data Processing	25
3.4	Galaxy Evolution Task Lists	. 27
	3.4.1 Techniques, Algorithms, or Software Development	. 27
	3.4.2 Techniques for identifying and deblending overlapping galaxies	28
	3.4.3 Optimizing Galaxy Morphology Measurements	29
	3.4.4 Optimizing Galaxy Photometry	30
	3.4.5 Optimizing Measurements of Stellar Population Parameters	. 31
3.6	Low-Surface Brightness Science	35
	3.6.1 Techniques for Finding Low-Surface Brightness Tidal Features	35
	3.6.2 Low-Surface Brightness Galaxies	. 37
	3.6.3 Probing the Faint Outskirts of Galaxies with LSST	40
	3.6.4 Low-Surface Brightness Intracluster Light	. 41
3.7	3.6.4 Low-Surface Brightness Intracluster Light	. 41 43
3.7		
3.7	Photometric Redshifts	43
3.7	Photometric Redshifts	43 43
3.7	Photometric Redshifts	43 43 43
3.7	Photometric Redshifts	43 43 43 44
3.7	 Photometric Redshifts	43 43 43 44 45
3.7	Photometric Redshifts3.7.1Impact of Filter Variations on Galaxy photo-z Precision3.7.2Photometric Reshifts in the LSST Deep Drilling Fields3.7.3Multivariate Physical Properties of Galaxies from Photometric Redshifts3.7.4Identifying Spectroscopic Redshift Training Sets for LSST3.7.5Develop Techniques to Identify Specific Sub-Populations of Galaxies3.7.6Simulations with Realistic Galaxy Colors and Physical Properties	43 43 43 44 45 45 46
3.7	Photometric Redshifts3.7.1Impact of Filter Variations on Galaxy photo-z Precision3.7.2Photometric Reshifts in the LSST Deep Drilling Fields3.7.3Multivariate Physical Properties of Galaxies from Photometric Redshifts3.7.4Identifying Spectroscopic Redshift Training Sets for LSST3.7.5Develop Techniques to Identify Specific Sub-Populations of Galaxies3.7.6Simulations with Realistic Galaxy Colors and Physical Properties	43 43 43 44 45 45 46
	Photometric Redshifts3.7.1Impact of Filter Variations on Galaxy photo-z Precision3.7.2Photometric Reshifts in the LSST Deep Drilling Fields3.7.3Multivariate Physical Properties of Galaxies from Photometric Redshifts3.7.4Identifying Spectroscopic Redshift Training Sets for LSST3.7.5Develop Techniques to Identify Specific Sub-Populations of Galaxies3.7.6Simulations with Realistic Galaxy Colors and Physical Properties3.7.7Using Galaxy Size and Surface Brightness distributions as Photo-z PriorsTheory and Mock Catalogs	43 43 43 44 45 45 45 46 . 47
	Photometric Redshifts3.7.1Impact of Filter Variations on Galaxy photo-z Precision3.7.2Photometric Reshifts in the LSST Deep Drilling Fields3.7.3Multivariate Physical Properties of Galaxies from Photometric Redshifts3.7.4Identifying Spectroscopic Redshift Training Sets for LSST3.7.5Develop Techniques to Identify Specific Sub-Populations of Galaxies3.7.6Simulations with Realistic Galaxy Colors and Physical Properties3.7.7Using Galaxy Size and Surface Brightness distributions as Photo-z Priors3.8.1Image Simulations of Galaxies with Complex Morphologies	43 43 43 44 45 45 45 46 . 47 48
	Photometric Redshifts3.7.1Impact of Filter Variations on Galaxy photo-z Precision3.7.2Photometric Reshifts in the LSST Deep Drilling Fields3.7.3Multivariate Physical Properties of Galaxies from Photometric Redshifts3.7.4Identifying Spectroscopic Redshift Training Sets for LSST3.7.5Develop Techniques to Identify Specific Sub-Populations of Galaxies3.7.6Simulations with Realistic Galaxy Colors and Physical Properties3.7.7Using Galaxy Size and Surface Brightness distributions as Photo-z Priors3.8.1Image Simulations of Galaxies with Complex Morphologies	43 43 43 44 45 45 45 46 . 47 48 48


The significance of the LSB Universe Most galaxies are LSB i.e. undetected by today's surveys

Martin, Kaviraj +19

- At 10¹⁰ MSun ~20% of galaxies are LSB
- At 10⁸ MSun ~90% of galaxies are LSB
- LSB galaxies are the norm rather than the exception
- Without a good understanding of LSB galaxies our understanding of galaxy evolution remains incomplete

The significance of the LSB Universe LSB tidal features are key tracers of our theoretical paradigm

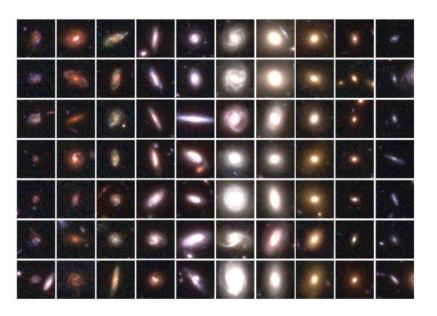

- LSB tidal features encode galaxy assembly histories
- Most mergers have low mass ratios which produce faint features
- Key tracers of our structure formation paradigm

The significance of the LSB Universe LSB tidal features are key tracers of our theoretical paradigm

Duc +11

The significance of the LSB Universe Intra-cluster light (ICL)

Mihos +05


- Galaxy clusters test our cosmological model
- But a significant fraction of baryons in the low-surfacebrightness ICL
 - Utility of clusters closely linked to how well we understand the evolution of the ICL

The significance of the LSB Universe

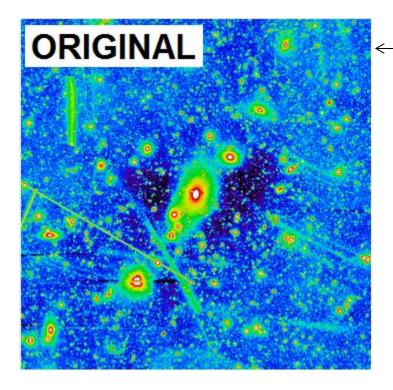
- Statistical LSB studies using deep-wide surveys are LSST's niche
- Huge unexplored discovery space a new frontier in galaxy evolution studies
- But...impossible without proper preparatory work
- Project pipelines are not optimised for LSB studies and no project effort planned in this area

Galaxy morphology

A fundamental quantity in observational cosmology

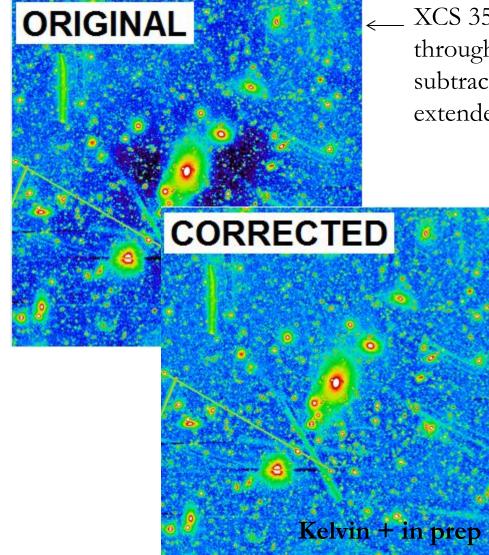
- Galaxy morphology is a fundamental parameter for all galaxy evolution studies
- Also key for a plethora of science in observational astrophysics
- ...e.g. an important prior in photo-z pipelines which underpin weak lensing studies and contextual data for transient lightcurve classifications
- Important for the science goals of several science collaborations e.g. Galaxies, AGN, strong lensing, transients etc.
- But...significant challenges due to LSST's data volume and cadence

Part 1: Enabling low-surface-brightness science using LSST


The problem:

- LSB structures acutely susceptible to sky over-subtraction and shredding by de-blenders
- Means that galaxy population is incomplete and LSB structures are removed/truncated/shredded -> LSB science impossible.
- Project pipeline known to suffer these effects (optimised for photometry i.e. smaller spatial scales than LSB structures) and no LSB-enabling work is planned by Project

The solution (provided by this WP):

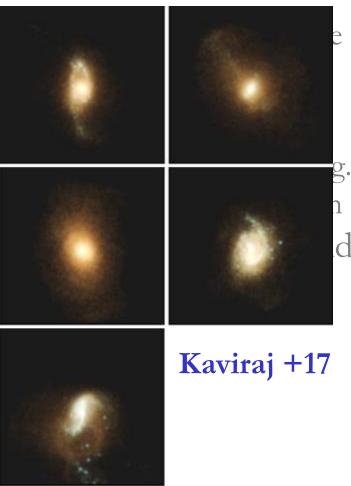

- Optimised sky subtraction to preserve LSB structures at any spatial scale
- Machine-learning algorithms for mitigating shredding

Phase B project Part 1: Enabling low-surface-brightness science using LSST

XCS 35 in HSC Deep DR1 i-band reduced through the current LSST pipeline. Sky oversubtraction is visible around bright and extended sources.

Phase B project Part 1: Enabling low-surface-brightness science using LSST

XCS 35 in HSC Deep DR1 i-band reduced through the current LSST pipeline. Sky oversubtraction is visible around bright and extended sources.


- Fit 2D Sersic models to sources
- Characterise the expected flux in the wings
- Residual between model and science map used to define over-subtraction threshold
- Values below threshold added back

Part 1: Enabling low-surface-brightness science using LSST

- Explore optimal background subtraction strategies for multiple spatial scales
- Benchmark on mock images from cosmological simulations e.g. Horizon-AGN (Kaviraj +17) inserted into HSC and ComCam frames to ensure proper representation of noise/background sources/camera effects in the data

Part 1: Enabling low-surface-brightness science using LSST

- Explore optimal background subtra spatial scales
- Benchmark on mock images from a Horizon-AGN (Kaviraj +17) inser frames to ensure proper representat sources/camera effects in the

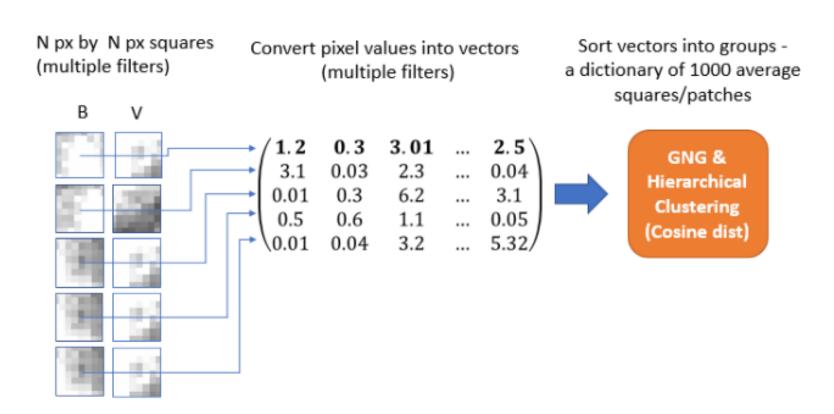
Part 1: Enabling low-surface-brightness science using LSST

- Explore optimal background subtraction strategies for multiple spatial scales
- Benchmark on mock images from cosmological simulations e.g. Horizon-AGN (Kaviraj+17) inserted into HSC and ComCam frames to ensure proper representation of noise/background sources/camera effects in the data
- The results of this WP will be critical for the global LSST community

Part 2: Measuring galaxy morphologies in LSST

The problem:

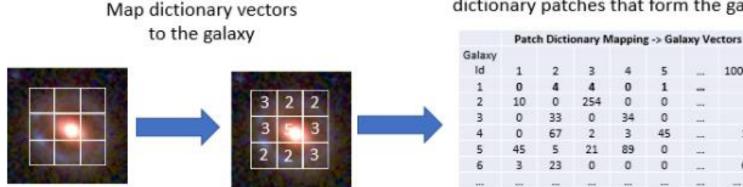
- LSST data volumes are unprecedented
- Makes visual classification (even using systems like Galaxy Zoo) intractable
- Requirement: **fast and accurate** automated techniques benchmarked via visual classification
- LSST's short cadence is an extra hurdle repeatedly producing training sets for supervised ML impractical


The solution (provided by this WP):

- *Unsupervised* ML + benchmarking via visual classification
- UML compresses arbitrarily large galaxy pop. into small number of `morphological clusters'
- ...and these **clusters** are then benchmarked against visual classification

Part 2: Measuring galaxy morphologies in LSST

An Unsupervised Approach


Step 1 – Build a dictionary of patches

Part 2: Measuring galaxy morphologies in LSST

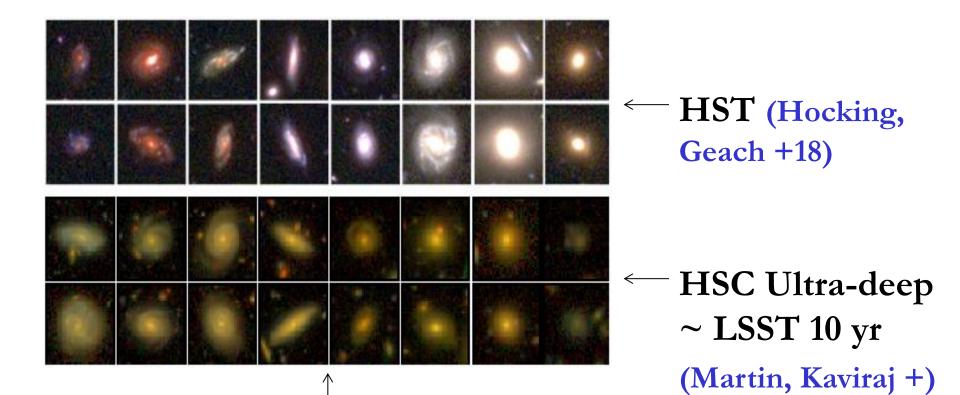
An Unsupervised Approach

Step 2 – Create Galaxy Vector Representations

Each vector is a histogram of the dictionary patches that form the galaxy

1000

10 0


Part 2: Measuring galaxy morphologies in LSST

An Unsupervised Approach

Step 3 – Sort Galaxy Vectors into Collections

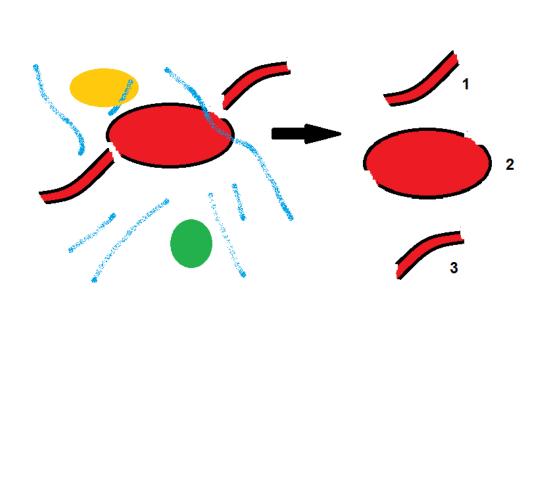
Sort galaxies into groups and create a Galaxy Vectors Galaxy Galaxy Gittionary of galaxies 1 0 4 0 1 000 2 10 0 254 0 0 0 3 0 33 0 34 0 0 Hierarchical Clustering Colspan="2">Clustering															
Galaxy GNG or 1 0 4 0 1 0 2 10 0 254 0 0 0 3 0 33 0 34 0 0 4 0 67 2 3 45 10 5 45 5 21 89 0 0									Ę						
Galaxy GNG or 1 0 4 0 1 0 2 10 0 254 0 0 0 3 0 33 0 34 0 0 4 0 67 2 3 45 10 5 45 5 21 89 0 0				Gala	xy Vect	ors			di	ictionary of gal	axies 🔊	_			
1 0 4 0 1 0 2 10 0 254 0 0 0 3 0 33 0 34 0 0 4 0 67 2 3 45 10 5 45 5 21 89 0 0		52		13		100						·			
1 0 4 4 0 1 0 2 10 0 254 0 0 0 3 0 33 0 34 0 0 4 0 67 2 3 45 10 5 45 5 21 89 0 0 Clustering		1		7.7			***	1000		GNG or			1000	100	
3 0 33 0 34 0 0 4 0 67 2 3 45 10 Hierarchical 5 45 5 21 89 0 0 Clustering	1	100	4	4	0	1		0						1.1	
4 0 67 2 3 45 10 5 45 5 21 89 0 0 Clustering	2	10	0	254	0	0		0		Kmeans or			100		
5 45 5 21 89 0 0 Clustering	3	0	33	0	34	0		0		Literature Literat	1		The state		1
5 45 5 21 89 0 0 Clustering	4	0	67	2	3	45		10		nierarchical					
6 3 23 0 0 0 67	5	45	5	21	89	0		0		Clustering					
	6	3	23	0	0	0	***	67		Contraction of					
												-		-	
n 0 0 3 0 54 3	n	0	0	3	0	54		3							1000

Part 2: Measuring galaxy morphologies in LSST

Tested on bright galaxies only

Part 2: Measuring galaxy morphologies in LSST

- Successfully tested on relatively bright galaxies in HST-CANDELS and HSC Udeep
- Adapt for LSB galaxies (which dominate the number density)
- Develop star-galaxy separation capability (works reasonably well on HST data but untested on HSC/LSST type data)


ng,

leep

 $(a_1 +)$

- Develop capability for strong lens detection (works on HST data but untested on HSC/LSST type imaging)
- Develop capability for mitigating shredding

Phase B project Part 2: Measuring galaxy morphologies in LSST

- If sky is over subtracted then galaxies and tidal features can be shredded
- Since it works at the **pixel level,** the UML algorithm can mitigate this
- ...because tidal features inherit properties from their parent galaxies

LSB science and UML for galaxy morphology Summary

Principal aims:

- Enable LSB science using LSST by developing optimised background modelling and sky subtraction at all spatial scales (funded in Phase B)
- (2) Develop unsupervised machine-learning infrastructure for morphological analysis
 - Morphological classification (not funded)
 - Star-galaxy separation (not funded)
 - Lens identification (not funded)
 - Mitiating shredding (funded in Phase B)