Automated Analysis of Strong Lenses with Machine Learning

Cardlff, 14/05/2019

Nan Li

The University of Nottingham

In Collaboration with

Simon Dye (UoN), Christopher Pearson (UoN), Francois Lanusse (Berkeley), Salman Habib (Argonne), Mike Gladders (UChicago), Katrin Heitmann (Argonne), Tom Collett (ICG), Camille Avestruz (Uchicago), etc.

"Looking for a needle in a haystack."

Lens Finding with Deep Learning

Training Sets

Receiver Operating Characteristic Curves

Sorted by area under the ROC curve

##		Team_name_submit	type	AUROC	TPRO	TPR10	c	description_short	author.1
##	14	resnet_ground_7bf8089	Ground-Based	0.9814321	8.993713e-02	0.4534297041		CNN	Francois Lanusse
##	10	CMU-DeepLens-Resnet-Voting	Ground-Based	0.9804913	2.445130e-02	0.1027314963		CNN	Quanbin Ma
##	20	LASTRO EPFL (11i)	Ground-Based	0.9749255	7.493794e-02	0.1131977256		CNN	Mario Geiger
##	3	cas_convnet_mean	Ground-Based	0.9634215	2.022629e-02	0.0761790327		CNN	Colin Jacobs
##	22	Ground	Ground-Based	0.9557059	0.000000e+00	0.0071018193		CNN	Emmanuel Bertin
##	23	Ground	Ground-Based	0.9557059	0.000000e+00	0.0071018193		CNN	Emmanuel Bertin
##	24	Ground_fixed	Ground-Based	0.9557059	0.000000e+00	0.0071018193		CNN	Emmanuel Bertin
##	25	Ground_fixed	Ground-Based	0.9557059	0.000000e+00	0.0071018193		CNN	Emmanuel Bertin
##	9	Philippa Hartley2	Ground-Based	0.9310191	2.237273e-01	0.3453159911		SVM / Gabor	Philippa Hartley
##	7	Philippa Hartley	Ground-Based	0.9293543	2.123763e-01	0.3316908714		SVM / Gabor	Philippa Hartley
##	27	Manchester-NA2	Ground-Based	0.8913778	2.803645e-04	0.0075297887		Human Inspection	Neal Jackson
##	28	Manchester-NA2	Ground-Based	0.8913778	2.803645e-04	0.0075297887		Human Inspection	Neal Jackson
##	29	${\tt Manchester-NA2-Submission2}$	Ground-Based	0.8913778	2.803645e-04	0.0075297887		Human Inspection	Neal Jackson
##	30	Manchester-NA2-Submission2	Ground-Based	0.8913778	2.803645e-04	0.0075297887		Human Inspection	Neal Jackson
##	4	All-star	Ground-Based	0.8365358	7.181615e-03	0.0186123524	edges/gradiants a	and Logistic Reg.	Camille Avestruz
##	13	CAST-GB	Ground-Based	0.8347916	2.005535e-05	0.0003810517		CNN / SVM	Clecio Roque De Bom
##	31	YattaLensLite	Ground-Based	0.8191702	2.194382e-04	0.0021145867		SExtractor	Alessandro Sonnenfeld
##	16	LASTRO EPFL (13b)	Space-Based	0.9325338	4.773626e-03	0.0779692201		CNN	Mario Geiger
##	8	resnet_5d0aad0	Space-Based	0.9225303	2.206807e-01	0.2904204271		CNN	Francois Lanusse
##	15	GAMOCLASS	Space-Based	0.9210117	7.416406e-02	0.3570444584		DL / CNN	Marc Huertas-Company
##	6	CMU-DeepLens-Resnet-Voting	Space-Based	0.9145407	0.00000e+00	0.0082046692		CNN	Quanbin Ma
##	1	space	Space-Based	0.9143197	6.755404e-04	0.0127852282		CNN	Emmanuel Bertin
##	19	res_bottleneck_87b7e8a	Space-Based	0.9068996	7.506005e-05	0.0038030424		CNN	Eric Ma
##	32	CNN_kapteyn	Space-Based	0.8179482	1.000625e-04	0.0002001251		CNN	Enrico Petrillo
##	21	CAST-SB	Space-Based	0.8128851	6.909326e-02	0.1186942145		CNN	Clecio Roque De Bom
##	5	Manchester1	Space-Based	0.8101726	7.354597e-03	0.1739837398		Human Inspection	Neal Jackson
##	18	Philippa Hartley2	Space-Based	0.8092423	2.859788e-02	0.0812650120		SVM / Gabor	Philippa Hartley
##	17	Philippa Hartley	Space-Based	0.8012731	2.934848e-02	0.0717323859		SVM / Gabor	Philippa Hartley
##	12	Attempt2	Space-Based	0.7626792	0.000000e+00	0.0008265498		CNN / wavelets	Andrew Davies
##	11	YattaLensLite	Space-Based	0.7622929	0.000000e+00	0.0003502802	I	Arcs / SExtractor	Alessandro Sonnenfeld
##	26	All-now	Space-Based	0.7346352	4.900040e-02	0.0659031545	edges/gradiants a	and Logistic Reg.	Camille Avestruz
##	2	GAHEC IRAP 1	Space-Based	0.6580909	1.127113e-03	0.0090920476		arc Met	calf et al. 2019

Lens Modelling with Machine Learning

Lens Modelling with Deep Learning

• Parameter Fitting techniques (e.g. Warren & Dye 2003, Nightingale, Dye & Massey 2018)

CNNs (Hezaveh et al. 2017) -> Speed up of ~7 orders of magnitude!

Created my own CNN to investigate:

the efficiency when applied to LSST- and Euclid-like images
how accuracy is affected by:

- the presence of the foreground **lens light**
- the assumed mass-light alignment
- the use of **multi-band** imaging
- the use of **stacked** images

3.0

2.5

2.0

1.5

1.0

0.5

0.0

0

 $arphi_{ ext{predicted}}$ - $\phi_{ ext{true}}$ (radians)

True θ_{E} (arcsec)

Lights & Mass Profile Correction

A CNN trained on zero scatter (blue line) uses lens light to predict the mass profile. There is scatter between the mass profiles and light profiles of observed lenses. We scattered both Orientation and Ellipticity to study the influences on the predictions. Solid Lines for "with lens light"; Dashed lines for "without lens light".

Pearson, Li, Dye, arXiv:1904.06199

Lights & Mass Profile Correction

A CNN trained on z mass profile. There i

When training a neural network, mass-light alignment *must be taken into account*. Realistic Training Sets are

necessary.

light to predict the les and light profiles

of observed lenses. We scattered both Orientation and Ellipticity to study the influences on the predictions. Solid Lines for "with lens light"; Dashed lines for "without lens light".

Pearson, Li, Dye, arXiv:1904.06199

Summary

- Gravitational lensing is useful in astrophysics and cosmology, but we will encounter some issues in the Era of LSST, such as identifying and modelling strong lenses.
- Deep learning works better than traditional methods and human eyes in the detection of Strong lenses in the first Lens Finding Challenge.
- Lens modelling can be improved by utilising deep learning, including automation and efficiency. But, Realistic Training Sets are necessary.
- Sy connecting the machine modules mentioned above to traditional lens modelling tools, we are building an end-to-end pipeline for the automated analysis of strong lenses.