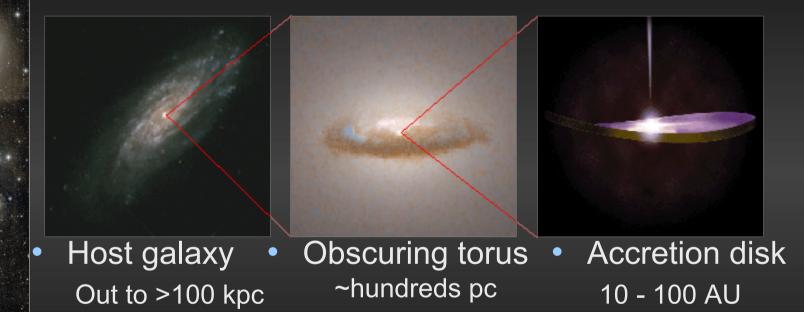
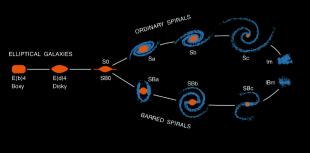
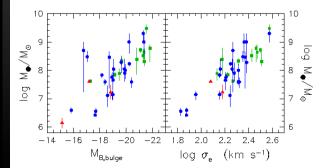

AGN in the LSST Era


Carole Mundell c.g.mundell@bath.ac.uk


PoC: LSST-UK AGN SWG



AGN as extreme use case

N E J

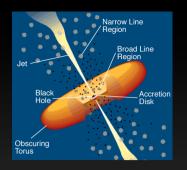
BH-bulge correlation AGN & galaxy evolution

All Major AGN Science

- Radio loud AGN
 - Discovery, multi-dimensional monitoring
 - Relativistic physics (obs+theory)
- Radio quiet AGN
 - Discovery, monitoring, host environments
- Fuelling, feedback, hosts + environments
- Accretion physics
- Probing quiescent BH population

New Big Picture

- Active galactic nuclei by power
 - Outflows, star formation and environment
- Illuminating inactive BHs
 - Flares and tidal disruptions
- The time domain challenge
 - Discovery & follow-up
 - Technology and politics
- The multi-messenger landscape


LSST-UK AGN

- Carole Mundell (PoC)
- Dave Alexander
- Manda Banerji
- Mark Birkinshaw •
- Katherine Blundell
- Garret Cotter •
- Julien Devriendt
- Chris Done
- Martin Hardcastle
- Nina Hatch ۲

- Paul Hewett •
- Keith Horne
- Matt Jarvis
- Sugata Kaviraj
- Shiho Kobayashi
- Andy Lawrence
- Daniel Mortlock
- Richard McMahon
 Diana Worrall
- James Mullaney
- Paul O'Brien •

- Mathew Page •
- Francesco Shankar
- Adrianne Slyz
- Aprajita Verma
- Martin Ward
- Steve Warren
- Vivienne Wild
- Andy Young

Bath, Bristol, Cambridge, Durham, Edinburgh, Hertfordshire, Imperial College, Leicester, LJMU, MSSL, Oxford, Nottingham, St Andrews...

UK Community

- Observational (static)
 - Strong multi-wavelength leadership
 - Imaging & spectroscopic surveys
 - Local galaxies
 - Kinematics
 - AGN and galaxy evolution

UK Community

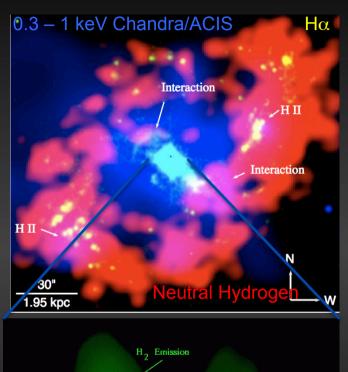
- Observational (time domain)
 - Strong multi-wavelength leadership
 - Imaging & spectroscopic surveys
 - Rapid-response follow-up
 - High-energy nuclear flares
 - TDEs will trace quiescent black hole population cf GW BHs
 - Reverberation mapping
 - AGN for cosmology (RM to z~2.5; z'-band dropouts to z~6.5-7.5)

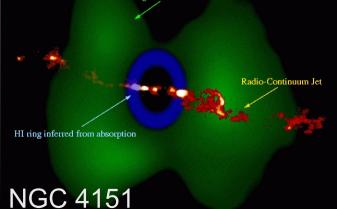
UK Community

- Theoretical
 - Major simulation frameworks
 - Key for embedding new data
 - Predictions for optimisation of obs. strategy
 - BH growth, accretion & duty cycles
- Machine learning, obs-theory interface
 - AGN ID/classification cf SN (ISSC)
 - Response to alerts (10 million per night?)

The Time-Domain Niche

- Reverberation mapping in Seyferts
- Radio loud quasars
- Optically violent variables
- X-ray timing
- Optical continuum monitoring of blazars
- Triggered flare followup
- Host galaxy studies

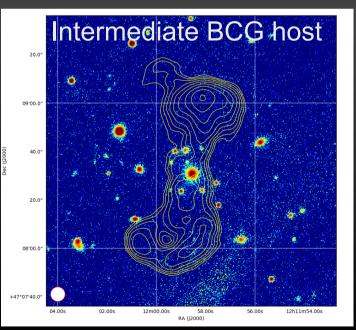

Black Holes biases


- BH mass bulge relation biased high
 - BH masses in AGN reduced
 - BH densities reduced
 - Radiative efficiencies/BH spin increased
- Episodic activity
 - AGN lifetime reduced
 - Duty cycles/BH growth extended

Barth et al. 2016; Greene et al. 2016; Shankar et al. 2016; Wang et al. 2011

Feedback & AGN Evolution

- Chandra soft X-ray emission to R = 2 kpc, L(0.5-2keV)~10³⁹ erg/s (Wang et al. 2010)
- *Recent AGN:host interaction
 - Mechanical energy deposited
 < 10⁵ years or
 - * Eddington-limited outburst luminosity ~ 10,000 yr ago
- * Live systems c.f. Milky Way
- Short timescale outbursts > 1% AGN lifetime

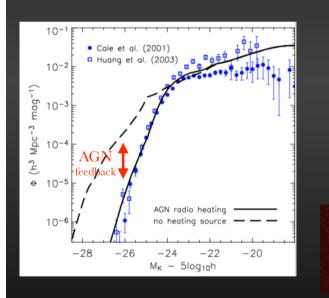




Wang+ 2010, ApJ, 719, L208; Mundell et al. 2003

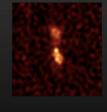
LSST – SKA Synergies

- Discovery bands + cross correlation
- Even at PanSTARRS depth, no optical counterparts for 40% large, bright radio sources (Hardcastle+)
- LSST will do better; EUCLID will augment

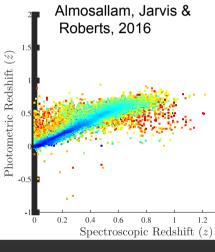


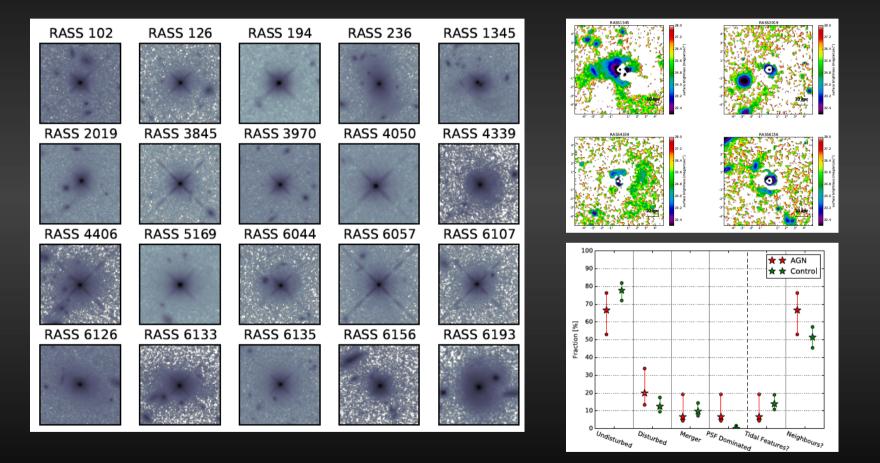
PanSTARRS I-band + LOFAR

Martin Hardcastle (Hertfordshire)

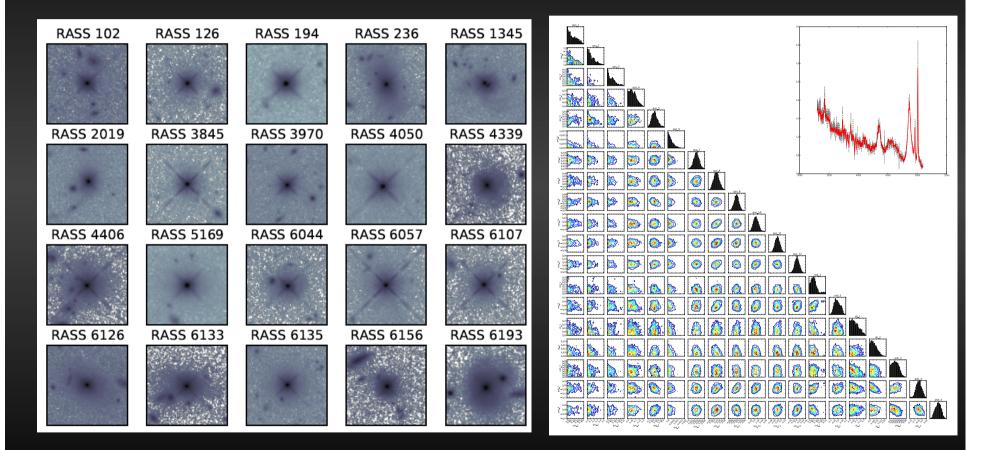

AGN evolution and Feedback

- Combine LSST + multi-wavelength data to augment AGN identification ۲
- Combine ComCam data with radio data from MeerKAT and nearIR ۲ data from VIDEO/VEILS/SpitzerDeepDrill,
- Preparation for full LSST + Euclid + SKA1 ۲



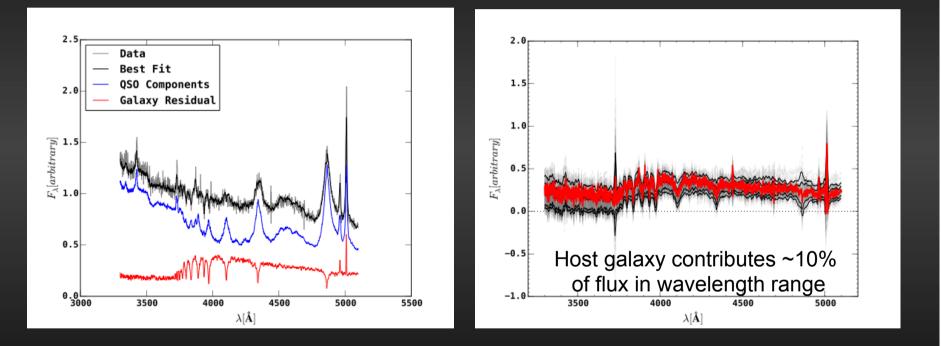


Matt Jarvis (Oxford)

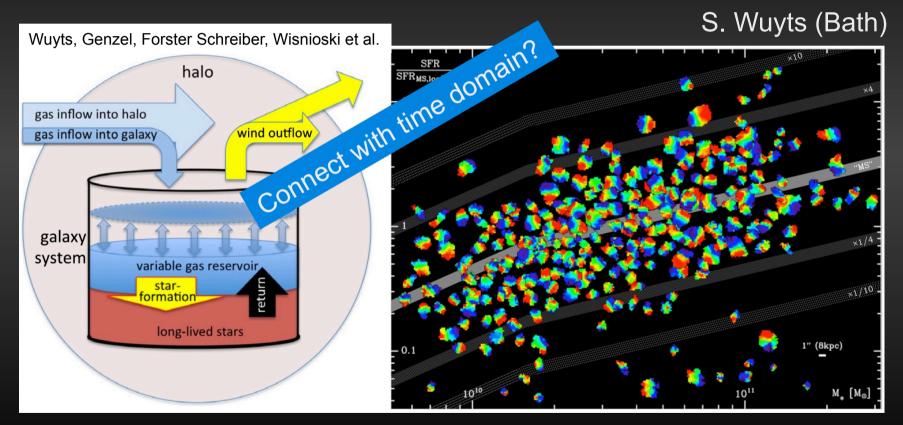

Luminous Quasar Systems

Villforth+17, MNRAS, 466, 812

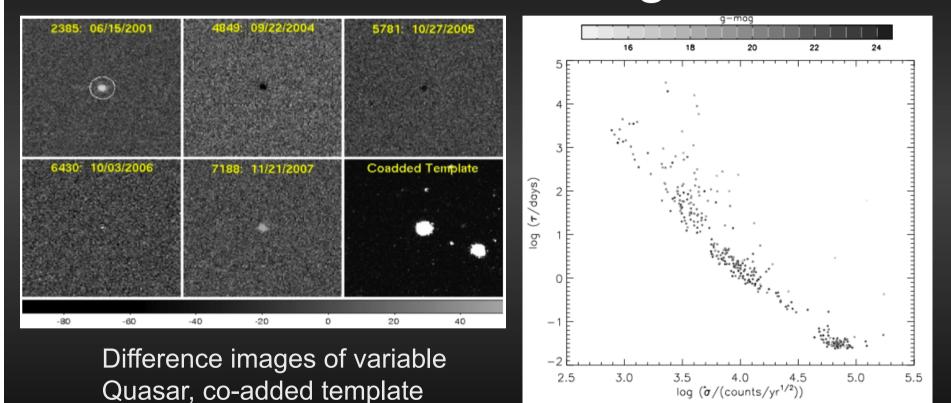
Host galaxies of z~0.6 quasars: Major mergers not prevalent at highest quasar luminosities


Luminous Quasar Systems

Bayesian MCMC spectral decomposition of luminous quasars ($L_{bol} = 10^{45}$ erg/s)


Villforth, Wild, Hewett in prep

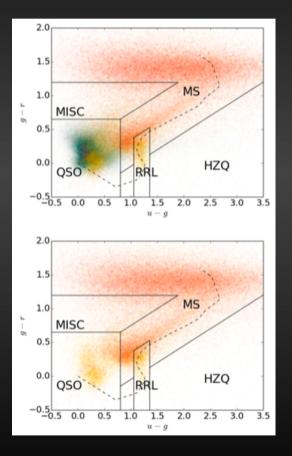
Luminous Quasar Systems


Timescales & lifetimes: SF vs accretion vs feedback vs duty cycles >4000 SDSS quasars analysed so far 8m+ Spectroscopy for LSST? C. Villforth (Bath)

Galactic outflows vs z

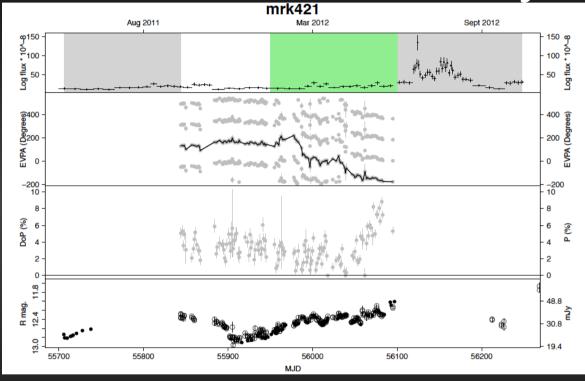
Gas regulator model > 600 deep galaxy cubes 0.6 < z < 2.6Outflows ubiquitous but what dependence on SFR, Mstar, Mdyn ... ?

Variability Selected AGN in Difference Images



SF for X-ray selected point sources Colour coded by g-band mag Faint sources = shorter timescales?

Choi et al. 2014


SDSS IV eBOSS - TDSS

- Spectroscopic ID of 220,000 luminosity-variable objects across 7500 deg²
- Variability complements colour selection
- Additional redder quasars
- Mitigates redshift biases
- More higher blazars BALQSO than from color-selected samples.

(Morganson+16)

Real-time variability

Jermak+2016, MNRAS, 462, 4267

Monitoring known blazars, changing-look quasars, newly discovered AGN.

Precursor predictions for γ-ray flares? External triggers? Autonomous follow-up

AGN as Transients

- Gamma-ray flare triggers optical follow-up
- CTA + LSST
- Also GW + LSST
- LSST transients self-triggers more challenging
 - Filtering, classification, optimisation
 - Changing look quasars vs flares
- Other communities developing strategies

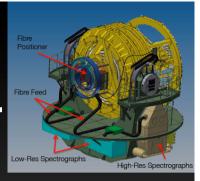
Tracing quiescent black holes TDEs

- small number discovered so far; some puzzles
- Optical (non-relativistic?) abundances patterns, origin of UV/optical from large r, low X-ray columns, post-starburst hosts, spectra could reveal type & mass of disrupted star (Cenko et al)
- 3D AMR flash simulations for feeding rate
- Stellar tidal radius of M-S star inside R_{Sch}
- Peak timescale + peak mag estimate type of disrupted star (Ramirez-Ruiz et al.)

Tracing guiescent black holes

LSST will find thousands

Classification &
follow-up vital but challenging


Loss cone depleted for high BH mass, but full for low mass > search dwarf galaxies?

S,

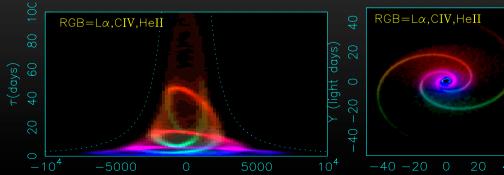
High-energy (relativistic) TDEs rare
Multiwavelength co-ordination
TDE unification scheme?!

disrupted star

ESO – VISTA 4MOST

- ESO MOS on the 4-m VISTA telescope (Paranal) to be commissioned by 2022.
- Galactic & extragalactic surveys
 - UK consortium buy-in to lead TiDES 250,000 fibre hours + TiDES core mission: follow-up and supplement LSST
 - 'Live' transients, monitoring etc
 - ESO operations mode change needed
 - Community developing follow-up strategy now

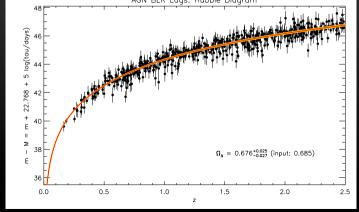
Instrument Specification



AIP	
Specification	Concept Design value
Field-of-View (hexagon)	>4.0 degree ² (Ø>2.5°)
Multiplex fiber positioner Medium Resolution Spectrographs	~2400 R~5000-8000
# Fibres Passband Velocity accuracy	1600 fibres 390-930 nm < 2 km/s
High Resolution Spectrograph # Fibres Passband Velocity accuracy	R~20,000 800 fibres 395-456.5 & 587-673 nm < 1 km/s
# of fibers in \emptyset =2' circle	>3
Area (5 year survey)	>2h x 16,000 deg ²
Number of 20 min science spectra (5 year)	~100 million

Roelof de Jong | 4MOST

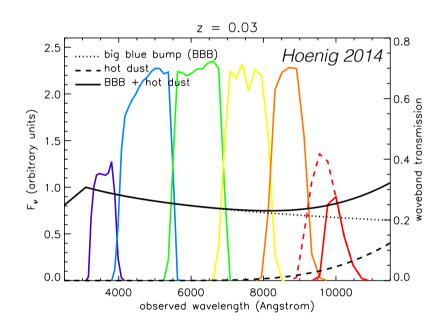
Reverberation Mapping


- Reverberation mapping campaign within TiDES: monitor about 1,000 AGN for broad-line reverberation mapping; 0 < z < 4 (mostly at z < 2.5)
- Kinematic black hole masses into early universe, e.g. galaxy evolution cf TDE

Keith Horne et al.

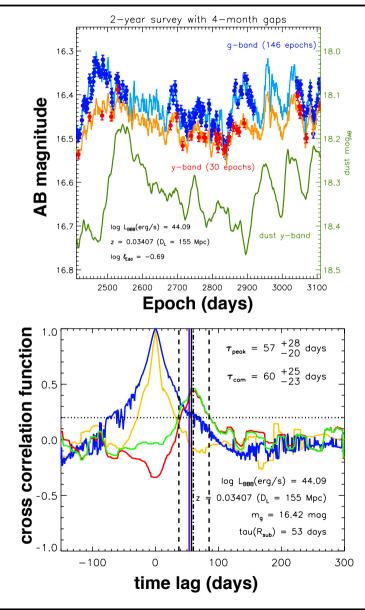
Reverberation Mapping

- Broad-line lag-luminosity relation now used as standardisable candle (e.g. Watson et al. 2011; King et al. 2014, 2015; Shen et al. 2015)
- ~12,000 TiDES fibre hours reserved
- LSST complements with high-quality multi -band continuum light curves with systematics independent of TiDES

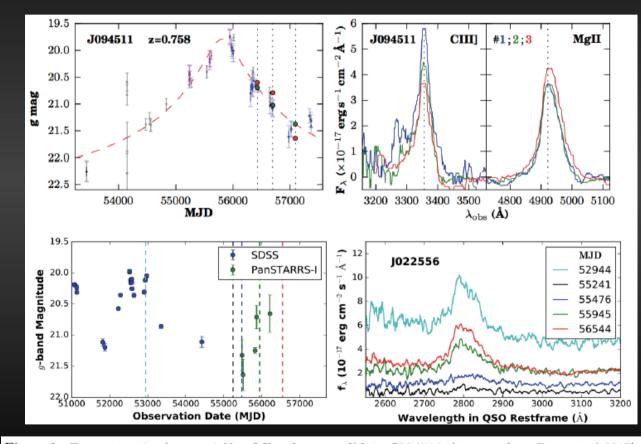


Dust reverberation mapping

- Wien tail of hot dust emission reaches into (red) optical bands
 - decompose ugrizy into disk+dust light curves
 - techniques similar to photometric emission line reverberation mapping (e.g. Chellouche & Daniel 2012; Chellouche & Zucker 2013)
 - Dust lag-luminosity relation a standardisable candle (e.g. Hoenig et al. 2017, MNRAS 464, 1639)
 - requires local set of AGN


Sebastian Hoenig (Southampton)

AGN hot dust lags with LSST


Relative Contributions of Hot Dust to Wavebands at Different Redshifts

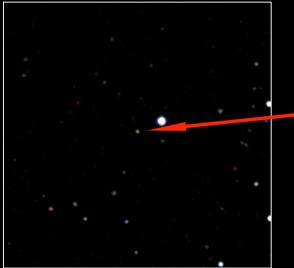
Redshift	$\overline{a} = 0$	z = 0.05	z = 0.1	-0.2	-0.3
Redshift	z = 0	z = 0.05	$z \equiv 0.1$	z = 0.2	z = 0.3
<i>i</i> band	0.019	0.012	0.007	0.003	
z band	0.073	0.052	0.031	0.014	0.004
y band $(y3)$	0.206	0.158	0.109	0.053	0.020
y band (y 4)	0.168	0.126	0.085	0.041	0.015

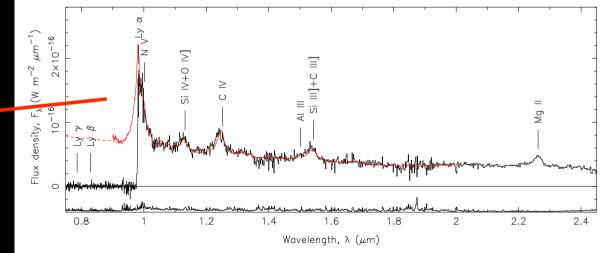
Sebastian Hoenig

Lensed AGN

Microlensing events Light curve and spec

Strong lensing time delays

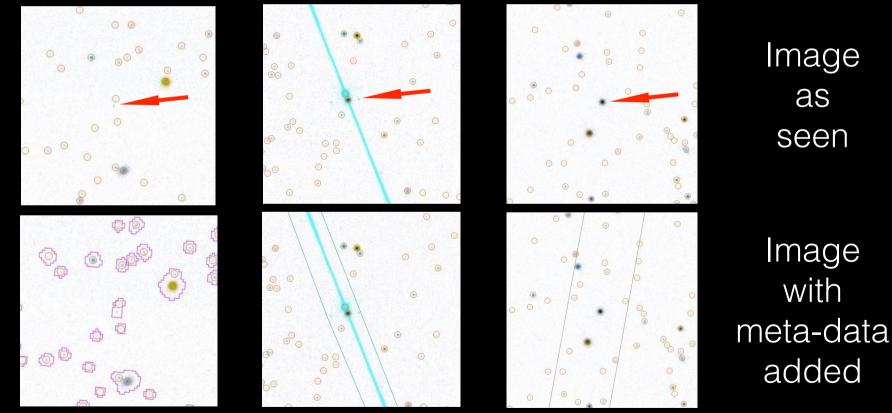

All lensed


Figure 1: Two contrasting hypervariables. Microlens candidate J094511 (top row, from Bruce et al 2017) shows a smooth light curve over many years well fitted by a simple microlensing model. Spectral epochs are indicated by vertical dotted lines. Mg II is essentially unchanging and so is much bigger than the lens; CIII] does change, but by less than the continuum, giving a partially resolved transverse size. CLQ J022556 (bottom row, from Homan et al in preparation) shows a more erratic light curve. The MgII line collapses and then recovers, in clear response to the ionising continuum.

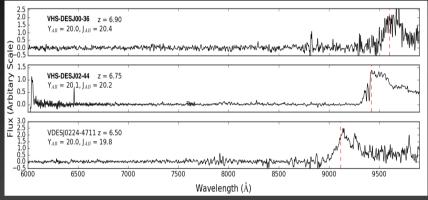
Andy Lawrence Aprajita Verma

Discovering z > 6.5 quasars with LSST

Daniel Mortlock (Imperial College London)

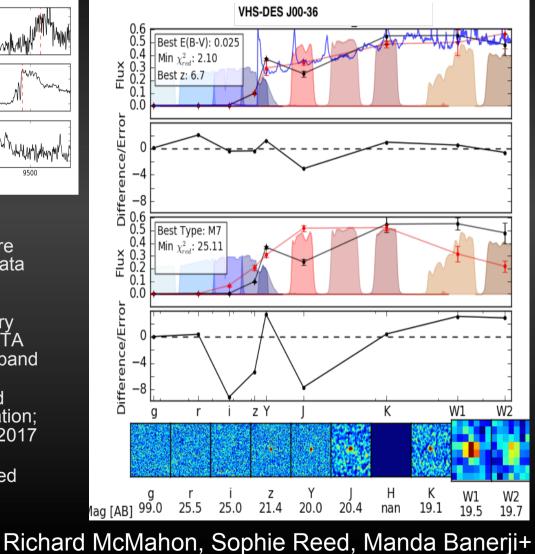

(Mortlock et al. 2011)

Discovering z > 6.5 quasars with LSST


- Quasars at z > 6.5 will be strongly detected in LSST y images and will be absent in LSST ugriz images.
- Separate from z ~ 2 galaxies and brown dwarfs with EUCLID NIR photometry and WISE FIR photometry.
- Major problem will be spurious false positives from data processing artefacts, rare events, spurious drop-outs, etc.
- Machine learning will have to be used in place of visual inspection.

Discovering z > 6.5 quasars with LSST

Examples of spurious drop-outs from SDSS:



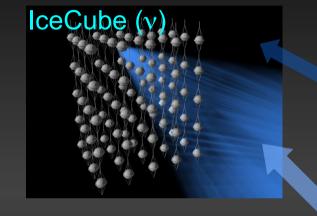
Supermassive Black Hole formation and evolution z > 7 quasars

• LSST z and y band drops

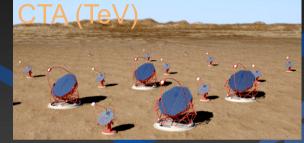
- Pixel level listdriven forced aperture and model photometry on LSST data using VISTA Hemisphere based J band images and catalogue
- Pixel level model based photometry on NEOWISE-R image using VISTA Hemisphere based J band and K band images and catalogue
- LSST + VISTA + WISE SED based probabilistic photometric classification; e.g. Reed, McMahon et al. 2015, 2017 for DES + VISTA + WISE
- Supervised Machine Learning based classification; e.g. Ostrovski, McMahon et al, 2017

Summary

- AGN with LSST perhaps most diverse technical/scientific case
- Host galaxy to nucleus + dynamic range
- Variability + spectroscopy helps
- Fast transients AGN flares, TDEs probe new physics
- Autonomous follow-up after filtering
- Autonomous co-ordination
 - multi-scale, multi-use brokers


Notes

- Multi-scale brokers
- Multi-scale compute resource
 - Distance from LSST site related to speed of response needed
 - Fast transient ID/followup vs static survey science
- Cadence design (including colour cycles)
- Amendments to simulators
- Level 3 development UK lead/funding


Consider joining USA AGN Science Collaboration New Science Roadmap in prep

UK members so far: Mundell (Leads Extreme Variability WG) Hoenig, Lawrence, Jarvis +

Multi-messenger Landscape Next decade and beyond

aLIGO/Virgo (GW)

SKA (radio)

Swift satellite(γ, X, optical Discovery & response)

Optical – rapid response

GAIA satellite