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. AGN as extreme use case
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All Major AGN Science

Radio loud AGN

* Discovery, multi-dimensional monitoring
* Relativistic physics (obs+theory)
Radio quiet AGN

* Discovery, monitoring, host environments
Fuelling, feedback, hosts + environments
Accretion physics

Probing quiescent BH population




New Big Picture

* Active galactic nuclei by power
* Qutflows, star formation and environment

* l[lluminating inactive BHs

* Flares and tidal disruptions

* The time domain challenge
* Discovery & follow-up
* Technology and politics

* The multi-messenger landscape
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UK Community

* Observational (static)

» Strong multi-wavelength leadership
maging & spectroscopic surveys
_ocal galaxies
Kinematics
AGN and galaxy evolution




UK Community

* Observational (time domain)
» Strong multi-wavelength leadership
* Imaging & spectroscopic surveys

* Rapid-response follow-up
High-energy nuclear flares

TDEs will trace quiescent black hole population
cf GW BHs

Reverberation mapping

AGN for cosmology (RM to z~2.5; z'-band
dropouts to z~6.5-7.5)




UK Community

* Theoretical
* Major simulation frameworks
* Key for embedding new data
* Predictions for optimisation of obs. strategy
* BH growth, accretion & duty cycles

* Machine learning, obs-theory interface
* AGN ID/classification cf SN (ISSC)
* Response to alerts (10 million per night?)




The Time-Domain Niche

Reverberation mapping in Seyferts
Radio loud quasars
Optically violent variables
X-ray timing
* Optical continuum monitoring of blazars
* Triggered flare followup
* Host galaxy studies




Black Holes biases

* BH mass — bulge relation biased high
* BH masses in AGN reduced
* BH densities reduced
* Radiative efficiencies/BH spin increased
* Episodic activity
* AGN lifetime reduced
* Duty cycles/BH growth extended

Barth et al. 2016; Greene et al. 2016; Shankar et al. 2016; Wang et al. 2011




Feedback & AGN Evolutlon

Chandra soft X-ray emission to
R =2 kpc, L(0.5-2keV)~1039
erg/s (Wang et al. 2010)

Recent AGN:host interaction

Mechanical energy deposited

< 10° years or

Eddington-limited outburst
luminosity ~ 10,000 yr ago

Live systems c.f. Milky Way

Short timescale — outbursts >

1% AGN lifetime
NGC 4151

Wang+ 2010, ApJ, 719, L208; Mundell et al. 2003




LSST — SKA Synergies

* Discovery bands + cross correlation

* Even at PanSTARRS depth, no optical counterparts
for 40% large, bright radio sources (Hardcastle+)

 LSST will do better; EUCLID will augment

I\ntermgdlate BCG host

PanSTARRS I-band + LOFAR Martin Hardcastle (Hertfordshire)




AGN evolution and Feedback

 Combine LSST + multi-wavelength data to augment AGN identification

« Combine ComCam data with radio data from MeerKAT and nearlR
data from VIDEO/VEILS/SpitzerDeepDirill,

* Preparation for full LSST + Euclid + SKA1

"VIDEO.Y,J H:Ks , - o

Almosallam, Jarvis &
Roberts, 2016
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MeerKAT-16 first light image

Matt Jarvis (Oxford)




Luminous Quasar Systems
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Villforth+17. MNRAS, 466, 812 Host galaxies of z_~0.6 quasars: Majpr mergers
not prevalent at highest quasar luminosities




Luminous Quasar Systems
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Bayesian MCMC spectral decomposition of
luminous quasars (L, = 10% erg/s) Villforth, Wild, Hewett in prep




Luminous Quasar Systems
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Timescales & lifetimes: SF vs accretion vs feedback vs duty cycles

>4000 SDSS quasars analysed so far 8m+ Spectroscopy for LSST?

C. Villforth (Bath)




Galactic outflows vs z

S. Wuyts (Bath)

| %390

Wuyts, Genzel, Forster Schreiber, Wisnioski et al.

halo

gas inflow into halo
gas inflow into galaxy

1" (8kpe)

10" oM, M) T
l = 1 1 1 1 l-

Gas regulator model > 600 deep galaxy cubes 0.6 <z < 2.6
Outflows ubiquitous but what dependence on SFR, Mstar, Mdyn ... ?




Variability Selected AGN in
Difference Images
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Quasar, co-added template
SF for X-ray selected point sources

| Colour coded by g-band mag
Choi et al. 2014 Faint sources = shorter timescales?




SDSS IV eBOSS - TDSS

Spectroscopic ID of 220,000

luminosity-variable objects across
7500 deg?

Variability complements colour

selection
Additional redder quasars
Mitigates redshift biases

More higher blazars BALQSO than
from color-selected samples.

(Morganson+16)




Real-time variability
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Jermak+2016,
MNRAS, 462, 4267

13.0

Monitoring known blazars, changing-look quasars,
newly discovered AGN.

Precursor predictions for y-ray flares?
External triggers? Autonomous follow-up




AGN as Transients

Gamma-ray flare triggers optical follow-up
CTA + LSST
Also GW + LSST

LSST transients self-triggers — more
challenging

* Filtering, classification, optimisation

* Changing look quasars vs flares

Other communities developing strategies




Tracing quiescent black holes
* TDEs

* small number discovered so far; some puzzles

* Optical (non-relativistic?) — abundances
patterns, origin of UV/optical from large r, low

X-ray columns, post-starburst hosts, specira
could reveal type & mass of disrupted star
(Cenko et al)

* 3D AMR flash simulations for feeding rate
* Stellar tidal radius of M-S star inside Rq,

* Peak timescale + peak mag — estimate type of
disrupted star (Ramirez-Ruiz et al.)




Tracina auiescent black holes

« LSST will find thousands
* Classification &
follow-up vital but challenging
* Loss cone depleted for high BH mass,

but full for low mass > search dwarf
2 1o —
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disrupted star
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ESO — VISTA 4MOST|

* ESO MOS on the 4-m VISTA telescope
(Paranal) to be commissioned by 2022.

* Galactic & extragalactic surveys

* UK consortium buy-in to lead TIDES
250,000 fibre hours + TIiDES core mission:
follow-up and supplement LSST

* ‘Live’ transients, monitoring etc

ESO operations mode change needed
Community developing follow-up strategy now




@ Instrument Specification

—

Specification Concept Design value

Field-of-View (hexagon) >4.0 degree? (2>2.5°)

Multiplex fiber positioner ~2400

Medium Resolution Spectrographs R~5000-8000
# Fibres 1600 fibres
Passband 390-930 nm
Velocity accuracy <2 km/s
High Resolution Spectrograph R~20,000
# Fibres 800 fibres
Passband 395-456.5 & 587-673 nm
Velocity accuracy <1km/s

# of fibers in @=2’ circle >3

Area (5 year survey) >2h x 16,000 deg?

Number of 20 min science spectra (5 year) ~100 million

\———

oelof de Jong | 4AMOST




Reverberation Mapping

* Reverberation mapping campaign
within TIDES: monitor about 1,000
AGN for broad-line reverberation
mapping; 0 <z <4 (mostly at z < 2.5)

* Kinematic black hole masses into early
universe, e.g. galaxy evolution cf TDE

RGB=La,CIV,Hell

RGB=La,CIV,Hell
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Keith Horne et al.




Reverberation Mapping

* Broad-line lag-luminosity relation now used as
standardisable candle (e.g. Watson et al.
2011; King et al. 2014, 2015; Shen et al. 2015)

e ~12,000 TiDES fibre hours reserved

* LSST complements with high-quality multi
-band continuum light curves with systematlcs

independent of TIDES




Dust reverberation mapping

 Wien tail of hot dust emission reaches
into (red) optical bands

* decompose ugrizy into disk+dust light curves

* techniques similar to photometric emission
line reverberation mapping (e.g. Chellouche &
Daniel 2012; Chellouche & Zucker 2013)

* Dust lag-luminosity relation a standardisable
candle (e.g. Hoenig et al. 2017, MNRAS 464, 1639)

requires local set of AGN

Sebastian Hoenig (Southampton)




AGN hot dust lags with LSST

2—year survey with 4—month gaps
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Lensed AGN
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Figure 1: Two contrasting hypervariables. Microlens candidate J094511 (top row, from Bruce et al 2017) shows a Andy Lawrence
smooth light curve over many years well fitted by a simple microlensing model. Spectral epochs are indicated by vertical

dotted lines. Mg II is essentially unchanging and so is much bigger than the lens; CIII] does change, but by less than the .

continuum, giving a partially resolved transverse size. CLQ J022556 (bottom row, from Homan et al in preparation) Ap raJ |ta Ve rma
shows a more erratic light curve. The Mgl line collapses and then recovers, in clear response to the ionising continuum.




Discovering z > 6.5 quasars
with LSST

Daniel Mortlock
(Imperial College London)

(Mortlock et al. 2011)




Discovering z > 6.5 quasars
with LSST

Quasars at z> 6.5 will be strongly detected in LSST y images
and will be absent in LSST ugrizimages.

Separate from z ~ 2 galaxies and brown dwarfs with EUCLID
NIR photometry and WISE FIR photometry.

Major problem will be spurious false positives from data
processing artefacts, rare events, spurious drop-outs, etc.

Machine learning will have to be used in place of visual
Inspection.

Daniel Mortlock




Discovering z > 6.5 quasars
with LSST

Examples of spurious drop-outs from SDSS:

Image
with
meta-data
added




Supermassive Black Hole formation and evolution
Z > [ quasars
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LSST z and y band drops

* Pixel level listdriven forced aperture
and model photometry on LSST data
using VISTA Hemisphere based J
band images and catalogue

* Pixel level model based photometry
on NEOWISE-R image using VISTA
Hemisphere based J band and K band
images and catalogue

 LSST + VISTA + WISE SED based
probabilistic photometric classification;
e.g. Reed, McMahon et al. 2015, 2017
for DES + VISTA + WISE

* Supervised Machine Learning based - . e
classification; e.g. Ostrovski, g r | z Y ) Wl w2
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Summary

AGN with LSST perhaps most diverse
technical/scientific case

Host galaxy to nucleus + dynamic range
Variability + spectroscopy helps

Fast transients — AGN flares, TDEs probe
new physics

Autonomous follow-up after filtering

Autonomous co-ordination
* multi-scale, multi-use brokers




Notes

Multi-scale brokers

Multi-scale compute resource

* Distance from LSST site related to speed of
response needed

* Fast transient |ID/followup vs static survey
science

Cadence design (including colour cycles)
Amendments to simulators
Level 3 development — UK lead/funding




Consider joining
USA AGN Science Collaboration

New Science Roadmap in prep

UK members so far:
Mundell (Leads Extreme Variability WG)
Hoenig, Lawrence, Jarvis +




Multi-messenger Landseape
Next decade and beyond

B S \vift satellite(y, X, optical
Discovery & response)




