Stars, Milky Way and the Local Volume

Philip Lucas (LSST UK PoC for the above) University of Hertfordshire p.w.lucas@herts.ac.uk

with material from

Tim Naylor, Aleks Scholz, Vasily Belokurov, Vicky Scowcroft, Ben Burningham, Eamonn Kerins

RAS LSST discussion meeting

12th May 2017

<u>Outline</u>

- Out-of-plane observations fairly well catered for at present
- In-plane observations current plan is silly

Milky Way Sub-groups

- Solar neighborhood: brown dwarfs, white dwarfs
- Milky Way halo ("Galactic Structure & ISM")
- "Magellanic clouds" and Local Group galaxies ("Near Field Cosmology")
- Variable stars
- Clusters
- Galactic Bulge:
 - TBD (LSST UK meeting in Preston next week)

Also

- Exoplanets
- Transients

Solar Neighborhood (d<100 pc)

- Parallax-based census of nearby space
 - brown dwarfs (and planets), white dwarfs, IMF, formation history
- Astrometry is key
 - Parallax precision of 0.6 (bright) to 8 mas (r = 24), DCR-corrected.
 - Pipeline will do shift and stack to detect nearby, high proper motion cold BDs.
 - Velocities allow statistical determination of population ages.
 - Young Moving Groups and clusters provide co-eval populations.
 - Caution: allow for movement of Galactic populations.
- Weather on brown dwarfs
 - Need to sample 1 day rotation periods.
- White dwarfs
 - Discover the coolest white dwarfs. Measure WD luminosity function.
 - Variable WDs (pulsators, dichroic magnetism, circumstellar matter). Need to sample periods of hours.

Milky Way Halo

Science Goals

- Milky Way formation and evolution
- Astrophysics of dwarf galaxies (formation)
- First stars
 - IMF from faint main sequence stars
- Dark matter physics

Observables (with good PMs and star/galaxy separation)

- 1D halo density profile to 200 kpc
- 3D shape to 100 kpc
- Velocity ellipsoid to 100 kpc
- Clumpiness to 30 kpc
- Halo substructure
 - Dwarf spheroidal galaxies
 - Stellar streams and stream perturbations a handle on the dark matter

Magellanic Clouds/Local Group

- Resolved stellar populations stellar astrophysics
 - Wide range of star cluster metallicities
 - Different age-metallicity relation than the MW \rightarrow breaks model degeneracies
- Need to take account of 3D structure of the Clouds
 - 6% LMC distance spread \rightarrow 12% apparent luminosity spread.
 - RR Lyraes distances & extinctions calculated with aid of 6 filters.
- Magellanic survey extension likely (Dec < -60°).
 - LSST complements OGLE-IV and DES/DECam

Other LG galaxies: many science cases, e.g. galaxy formation & evolution

Key Technical Requirement

• Precise DIA photometry for variable stars in LG galaxies and MC globulars.

Variable Stars

- Galactic structure (bulge, far side of Milky Way) using RR Lyraes, Cepheids
 - Complements VVV & VVVX by measuring structure GAIA cannot see.
 - Proper motions \rightarrow 5D structure. LSST precision = 0.17 mas/yr.
 - Dark matter content of Galactic bulge from proper motion catalogue.
- Eruptive YSOs driven by episodic accretion
 - A key problem in the formation of normal stars not understood.
 - VVV has shown it is common in embedded YSOs, burst durations of years
 - LSST depth needed for long term monitoring.
- X-ray binaries
- Milky Way transients
- CVs as type SN type Ia progenitors
- Magnetic cycles in normal main sequence stars
- The new and unknown

Variability in Young Stellar Objects (YSOs)

HL Tau, Brogan et al.2014, ALMA

CLASSICAL T TAURI STAR

(Lucas et al.2017, submitted)

Eruptive variable protostars found in regions at d = 0.3 to 10 kpc, $L = 0.1 - 10^3 L_{\odot}$

V322, a fast Fuor from VVV

Clusters

- Laboratories for stellar evolution, common distance, age, metallicity
 - LSST can measure rotation periods for cluster members and field stars
 - Gyrochronal ages a tool for stellar ages, calibrated by clusters
 - Comparison with asteroseismic ages (Kepler, TESS, PLATO).
 - Age activity relation.
- Old metal poor clusters: Milky Way assembly
- Kinematics of embedded YSOs
 - too faint for GAIA, synergy with VVVX will help to get to 0.1 mas/yr.

Technical Issue

- Cadence of 3 days needed
- Targeted observations of mature clusters and pre-MS clusters?

Exoplanets - microlensing

- Short duration microlensing events probe low mass exoplanets at 1-10 au.
- Target inner Milky Way disc every 3 days \rightarrow statistics at 5-10 au.
- LSST triggers high cadence follow up (OGLE-IV, MOA, KMTnet).
 - Triggers down to greater depth \rightarrow order of magnitude increase in events.
- Space-based observation also needed for microlensing parallax.
 - E.g. EUCLID, WFIRST at L2.

Technical Issues

- Universal LSST wide, fast, deep cadence ok
- but multiple colours not needed.

Conclusions

- The lion's share of Milky Way science requires more time/higher cadence
 - LSST needs to be an actual time domain survey!
- E.g. universal wide, fast deep cadence (800 times in 10 years) **<u>BUT</u>**
 - Cadence should cover a range of time baselines.
- Filter strategy would have to be different in the plane.
 - Contemporaneous colours
 - More observations in redder filters
- LSST UK Milky Way Science Workshop at U Hertfordshire, 26-27 June
 - https://sites.google.com/site/lsstukstars1/