

LSST follow-up with the Large Robotic Telescope (Liverpool Telescope 2)

Chris Copperwheat

Liverpool Telescope group: Stuart Bates, Neil Clay, Helen Jermak, Marco Lam, Jon Marchant, Chris Mottram, Andrzej Piascik, Robert Smith, Iain Steele

dream plan achieve

Robotic telescopes powerful tools for transient science

Transient science and the 'follow-up gap'

- Comprehensive and systematic programmes of spectroscopic follow-up (PESSTO) have been shown to add a huge amount of value to the big transient surveys
- However there is a big capacity gap for follow-up: only ~10% of iPTF transients received a spectroscopic *classification*
- An even greater problem in the LSST era: significant risk that the transient science potential of the survey will not be fully realised

The importance of fast follow-up

- Catching targets at very early times: spectral diagnostics of progenitors
- Fast evolving, early time features (shock breakout phase)
- New transient phenomena in 'fast and faint' discovery space

Multi-object spectroscopy?

- 100,000 genuine explosive transients per night?
- 500 fields per night, so 200 transients per field

However, spectroscopic visit longer than LSST visit

- Assume 15 min per visit, 10 hour night, \rightarrow 40 targets per night
- So even if MOS FoV matches LSST, only 8 per cent of fields get same night spectra
- In practice, rapid follow-up will involve choosing the best 50 candidates based on LSST broker
- Fairly low odds of a single spectroscopic pointing containing multiple best candidates...

Observation Properties: Visits per night = "about a 1000" Alert Production: Real-time alert latency = 60 seconds Average number of alerts per night= "about 10 million" Optical System: Field of View = 3.5 degrees (9.6 square degrees) Primary mirror diameter = 8.4 m

Target selection

- Intelligent, automated selection of most interesting candidates the hardest part of the new transient astronomy era
- Available photometric information, cross matching with other catalogues
- Scale of the challenge very much appreciated, work underway...

Large Robotic Telescope ("LT2")

- A new, 4-metre class robotic telescope for rapid follow-up of astrophysical transients. Largest robotic telescope in the world
- To be co-located with the LT on La Palma
- First light ~2022 to capitalise on new discovery facilities
- Versatile instrument payload opt/NIR spectroscopy a core focus (X-shooter type instrument)
- World-leading response time for fast fading / fast evolving transients, efficient programmes

Time Domain: strategic fit

- The next decade will see the advent of many new major facilities: most (all?) have a 'time domain' component
- Much of the science gain from these 'discovery' facilities will be realised via support from follow-up facilities: long term monitoring, lightcurves, spectroscopic classification, etc.

- Ritchey–Chrétien optics, with fast (f/1.5?) primary mirror
- Segmented primary. 6 segments same size as GTC segments an attractive option from a logistical point of view

Site: ORM on La Palma (342°E, 29°N)

- Excellent conditions, well know site for us, simplifies logistics
- Run two telescopes as a single facility
- Northern site still provides excellent access to a large fraction of the LSST field

-0.60 -0.45 -0.30 -0.15 0.00 0.15 0.30 0.45 0.60 CoaddM5 (coadded m5 - 26.8)

Project cost and existing partners

Description	Cost	
Project Office	£	2,575,000
Telescope Design	£	2,400,000
Telescope Construction	£	8,000,000
Instrumentation	£	2,000,000
LT Upgrade	£	1,500,000
Commissioning	£	300,000
Total	£	16,775,000

Total 6.25 year cost (including 10% contingency) for the delivery of the LT2 project, including LT upgrade.

- Project receiving strong support within LJMU, with VC taking the personal lead. Anticipate >50% of construction cost
- IAC have already raised 10 per cent of project cost and intend to raise more. Appointed engineering staff

Project cost and funding consortium

VI·IA

Summary

- Comprehensive spectroscopic follow-up vital for full exploitation of the new era of transient science
- A clear role for targeted, rapid response follow-up for objects of particular interest
- We intend to build a new 4m class telescope to come into operation on La Palma ~2022
- Telescope will be fully robotic with all the versatility that entails.
- Intermediate resolution spectroscopy, but provision for a diverse array of simultaneously mounted instrumentation

Science paper: Copperwheat et al. (2015) ExA 39,119 arXiv:1410.1732

LT2 website: http://telescope.livjm.ac.uk/lt2/

c.m.copperwheat@ljmu.ac.uk

A new role for the LT

- We aim to keep LT running but move the majority of staff effort to LRT:
 - Requires simplification of LT operations, reduction in operational costs.
- We propose to replace current instrument suite with single prime focus imager
 - 2x2 deg field for surveys, gravitational wave counterpart searches...
 - Cost ~10% of overall project budget

