Quantifying the impact of and interplay between different analysis choices for LSST-Y1 in cosmic shear

Current Status of Cosmic Shear

 Cosmic shear is the correlation between galaxy shapes due to gravitational lensing

 Consistent results between current lensing surveys

 Some 'tension' with CMB in S8

 Cosmic shear analysis is a many step process

 Several systematics including astrophysical systematics

0.70 0.75 0.80 0.85

 $\alpha_{\text{COSEBIs}} = 0.54$

0.75 0.80 0.85

 $\alpha_{\rm BP}=0.58$

0.70

KiDS-1000 Asgari et al. 2020 0.75 0.80 0.85

 $\alpha_{\rm 2PCFs} = 0.50$

0.70

19. No *z*-bin 4 20. No *z*-bin 5

 $\Sigma_8 \equiv \sigma_8 (\Omega_{\rm m}/0.3)^{lpha}$

- 2-point statistic
- Cosmological parameter choices
- IA model
- Baryon feedback mitigation
- Photo-z uncertainty marginalisation
- Priors on astrophysical parameters
- Priors on cosmological parameters
- Sampler
- Statistic to report

Goals for this project:

- 2-point statistic
- Cosmological parameter choices
- IA model
- Baryon feedback mitigation
- Photo-z uncertainty marginalisation
- Priors on astrophysical parameters
- Priors on cosmological parameters
- Sampler
- Statistic to report

- Which systematics dominate in the default case?
- What are the requirements on the priors not to be systematics limited?
- Which systematics mimic one another and how does this bias constraints?
- Be able to make recommendations for modelling choices in LSST-Y1
- Validate aspects of the DESC modelling pipelines

- 2-point statistic
- Cosmological parameter choices
- IA model
- Baryon feedback mitigation
- Photo-z uncertainty marginalisation
- Priors on astrophysical parameters
- Priors on cosmological parameters
- Sampler
- Statistic to report

- 2-point statistic
- Cosmological parameter choices
- IA model
- Baryon feedback mitigation
- Photo-z uncertainty marginalisation
- Priors on astrophysical parameters
- Priors on cosmological parameters
- Sampler
- Statistic to report

- 2-point statistic
- Cosmological parameter choices
- IA model
- Baryon feedback mitigation
- Photo-z uncertainty marginalisation
- Priors on astrophysical parameters
- Priors on cosmological parameters
- Sampler
- Statistic to report

Mock Analysis

- We consider two mock cosmic shear data vectors:
 - SRD

 $n_{\rm eff}[{\rm arcmin}^{-2}] = 9.52 \ \Delta z = 0.006(1+z) \ \sigma_e = 0.26$

• HSC Y3 like

 $n_{\rm eff}[{\rm arcmin}^{-2}] = 13.96 \ \Delta z = 0.015(1+z) \ \sigma_e = 0.26$

(0,0)

(4,4)

10³

- 2-point statistic
- Cosmological parameter choices
- IA model
- Baryon feedback mitigation
- Photo-z uncertainty marginalisation
- Priors on astrophysical parameters
- Priors on cosmological parameters
- Sampler
- Statistic to report

Cosmic Shear Analysis choices: Quantifying the impact of and interplay between different analysis choices for LSST-Y1 in cosmic shear

- Which systematics dominate in the default case?
- What are the requirements on the priors not to be systematics limited?
- Which systematics mimic one another and how does this bias constraints?
- Be able to make recommendations for modelling choices in LSST-Y1
- Validate aspects of the DESC modelling pipelines

