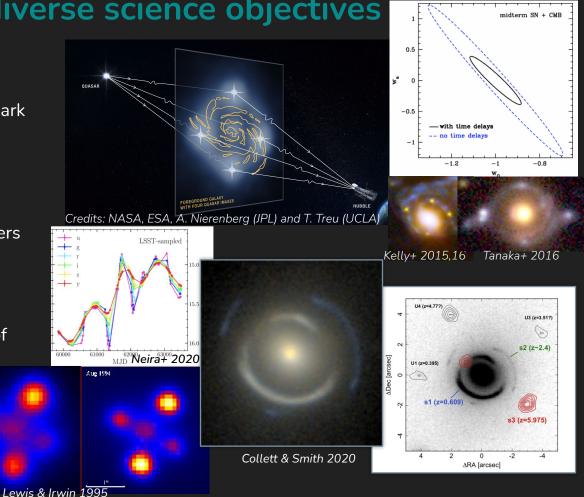


Early strong lensing science with the LSST

A. Verma, T. Collett, G. Smith, T. Anguita on behalf of the Strong Lensing Science Collaboration


SL: A tool/probe for diverse science objectives

Aug 1991

Selected Objectives:

- Weighing galaxies: Galaxy mass and dark matter (sub-)structure of 10⁴⁻⁵ lenses
- **Cosmography**: Lensed QSO, SNe & transients, double source plane lenses
- Calibrating the cluster mass function: SL+WL constraints on DM in 100 clusters
- **Quasar microlensing**: accretion disk structure of 1000 lensed AGN + IMF of lensing galaxies
- Cosmic Telescopes: Hi-res properties of high-redshift galaxies
- Rare and Exotic lenses
- many more...

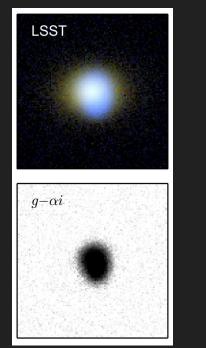
All can be started in early science

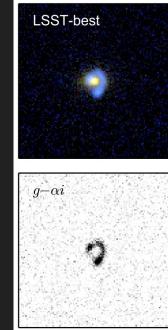
Linder 2011

What can we do early?

Single visit depths on any part of the sky are going to yield strong lenses from day 1

We will find new lenses


Key targets as these are the goldens sample for which FUP with 8m-ELT type telescopes will be possible


Monitor list for SL transients:

- Quasars
- SNe/GRBs
- Gravitational wave sources

Without monitoring new & known lenses, strongly lensed transients may be unidentified in the regular transients stream

Maximise image quality

Collett et al. 2015

Simulated LSST gri and $g-\alpha i$ images of lens, full depth and best seeing composite and difference image

Don't necessarily need all the depth, but the *best* seeing can help lens discovery

SL Quasars and SNe as commissioning targets

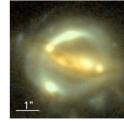
A Challenging use case (Smith, Verma, Collett et al.)

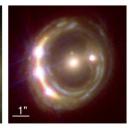
Strongly lensed quasars and supernovae around massive galaxies - source/lens crowding & complex backgrounds

For SL, of any kind, high IQ is very important

Potential to deliver insight in a different way to regular point sources

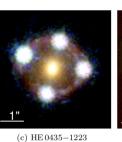
Use these complex cases to test and deliver the best possible performance considering active optics over the focal plane

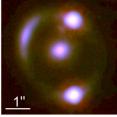

Key params: seeing, photometry (flux ratios), airmass, off-axis angle, active optics and detector parameters, and observing strategy.

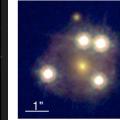

- Span a wide range of RA
- Well matched to single-visit depth
- filler/snapshot target list

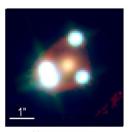
Provide hands-on effort to work with the SIT-Com to analyse results

Ensure high image quality & synergies with many other science cases and technical issues


(a) B1608+656


(b) RXJ1131-1231

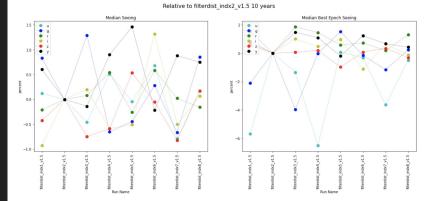

D


0.1'

(d) SDSS 1206+4332

(e) WFI2033-4723

(f) PG 1115+080


SL Observing Strategy Input

- ★ Requirements for general strong lens discovery Verma, Collett+ arXiv:1902.05141
 - Wide area with reasonable sensitivity in all bands (increases sample size) - <u>early reference survey</u> achieved in Y1 all strategies
 - Good image quality (to discern lensed images from lenses, better R_{ein} sampling, accurate image positions, majority have low R_{ein})
 - Blue sensitivity (detect typically blue SFGs)
 - Good "blue"/g-band seeing
- ★ Strongly Lensed Gravitational Wave events Smith+ arXiv:1902.05140
 - ToO modes & early reference survey

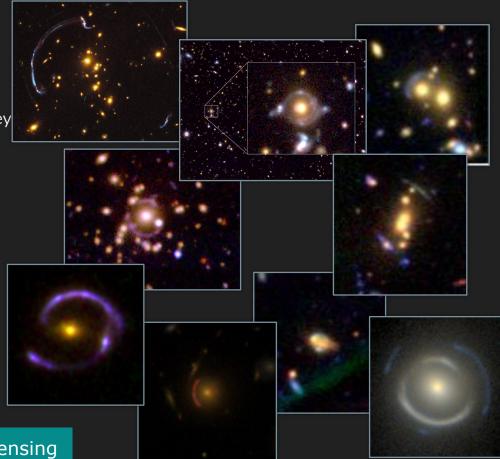
Theoretical Einstein Radius distribution

Einstein Radius (") Anguita, Verma, Collett et al. 2021

Early Science: WFD-like best single or good IQ stacks - much achieved with ERS/Y1

Summary

SL can achieve rapid science from day 1


- Early single-visit WFD-like reference survey
- Good image quality over all bands
- Preserving good image quality in the blue
- 'Golden samples' needed for transients (templates) and follow-up
- Feed into Rubin's Early science/alert generation discussion

Commissioning

- Unique lensed QSO/SNe targets
- Ensure IQ is maximised
- Synergies with other science areas

Join us!

https://sites.google.com/view/lsst-stronglensing

