

Rubin Commissioning and Early Science Cressida Cleland

UNIVERSITY^{OF} BIRMINGHAM

2nd Year PhD student <u>Super</u>visor: Sean McGee

Possibilities with the Legacy Survey of Space and Time

• Main science goals:

- The nature of dark matter and dark energy
- Cataloguing the solar system
- The structure of the Milky Way
- Exploring the changing Universe (time domain)
- My work:
 - Variability in galaxies caused by AGN

Image: Rubin Observatory

What is variability?

Image: NASA/JPL-Caltech

- An active galactic nucleus (AGN) is a luminous region at the centre of a galaxy.
- The luminosity is a result of accretion of matter by a supermassive black hole.
- AGN can vary in luminosity over both short (minutes ~ years) and long (million years ~ billion years) timescales (see Caplar et al. 2020 and references therein).
- AGN feedback is thought to have links to galaxy star formation quenching (see Fabian 2012 for a review).

What is variability?

- Time domain data from Zwicky Transient Facility (ZTF) matched with SDSS spectroscopic data
- LSST will provide more data at higher cadence
- Use BPT diagram on galaxies with sufficient SNR to classify emission as SF or AGN

• 51,000 galaxies \rightarrow 16,500 that pass cuts

How to calculate variability?

- Variability = $log(\chi^2 / d.o.f.)$
- Under the hypothesis that the galaxy is nonvariable, the points would form a flat line.
- The reduced χ² tests this hypothesis and provides a measure of how scattered the points are around the mean, taking uncertainties into account.
- Use simulated variabilities to account for magnitude-dependent uncertainties.

Results

Fairly similar distribution between AGN and SF

Stellar mass and environment

Emission type strongest indicator for variability

 Excess in variability in SF galaxies compared to AGN

Is variability simply a function of magnitude?

 Two categories of AGN: LINERs and Seyferts. Exhibit different magnitude distributions, but have similar variability distributions.

Restrain magnitude range

- With all galaxies in same magnitude range 17<m<18
- Slight excess in variability in SF galaxies
- Particularly at low mass

Other galactic properties

 Region of high variability at intermediate log(sSFR)

- Variability decreases with increasing B/T
- Suggests possible link to evolutionary processes

Conclusions

- Galaxies exhibit variability as a function of stellar mass:
 - Variability increases in SF objects until about log(M_{*})~10
 - Variability is lower in AGN until high stellar mass

 High variability is seen in low mass galaxies at intermediate sSFR

Conclusions

- These point to high variability being a pre-cursor to reduced SF
- High variability in SF galaxies may indicate presence of AGN (Baldassare et al. 2018; Pardo et al. 2016)
- This simple measure of variability proves effective at uncovering some interesting trends.
- LSST will offer even more data. For early analysis: well-measured magnitudes at different epochs at high-cadence.
- Get in touch: cressidac@star.sr.bham.ac.uk