Other missions and synergy: Simons Observatory

LSST:UK all-hands meeting

Long history of CMB science from the Atacama

NSF-funded Atacama Cosmology Telescope (PI Staggs) has been running since 2008, now in middle of 2016-21 wide-field survey.

In 2016 Simons Observatory was formed through funding from Simons Foundation, Heising-Simons Foundation and institutional support. Combined POLARBEAR/Simons Array collaboration and Atacama Cosmology Telescope collaboration, and has additional members including former Planck members.

*SO will also have three Small Aperture Telescopes for gravitational-wave search

$\begin{array}{cccc} Planck & \rightarrow & ACT & \rightarrow & SO & Large & Aperture & Telescope \end{array}$

Observations 2016-21 fsky=40% Noise 3 times < Planck 1' resolution

*SO/ACT can't measure largest scales in temperature (atmosphere), so combine with Planck

Timeline

Plan to deliver ACT+Planck, then SO+Planck products (maps and likelihoods) in common framework More regular/extensive data delivery depending on our analysis support (NSF proposal for data release support + ongoing European support)

Much of our core science comes from correlations \rightarrow we want to work with DESC! (and Euclid, DESI++)

Then: SO-Large Aperture Telescope 2022-28

Combined white noise level: 4-6 µK*arcmin

6 frequencies: 30-270 GHz

Coverage being finalized; aim for maximum LSST/DESI overlap

Zoom in on a small patch, comparison with Planck

Map, power spectra, cosmology papers: <u>Aiola et al. 2020</u> <u>Naess et al. in prep</u> <u>Choi et al. in prep</u>

ACT: progress towards large-field clusters/lensing/Compton-Y

>2500 confirmed SZ clusters over 16000 deg2 with redshifts to date - sample due for release 2020 (Hilton et al. 2020)

ACT lensing map (<u>Darwish et al. 2020</u>) over 2000 deg2 \rightarrow extending to 16,000 deg2 in next 1-2 years (data in hand)

SO-LSST science: Primary & <u>secondary</u> CMB anisotropies

secondary anisotropies correlated to low redshift probes primary anisotropies early Universe physics

Fundamental science: Dark Energy and primordial NG

Fundamental science: Dark Energy and primordial NG

Same principle for f_{NL} kSZ cross-correlation particularly powerful (1/k weighting)

SO Collab., 2019. Münchmeyer et al., 2019.

Fundamental science: Dark Energy and primordial NG

Same principle for f_{NL} kSZ cross-correlation particularly powerful (1/k weighting)

SO Collab., 2019. Münchmeyer et al., 2019.

+ neutrino mass, H₀!

Cluster science and systematics

LSST WL mass-calibration for tSZ cluster analyses CMB halo lensing allows for mass-calibration of high-z optical clusters (3% at z~1)

LSSTxSO tSZ clusters $\sigma(\Sigma m_{\nu}) = 27 \text{ meV} \quad \Lambda \text{CDM} + \Sigma m_{\nu}$

SO Collab., 2019

Shear systematics: shape measurement and baryons

م» «٢٠ «٢٠ «٢٠ «٢٠ «٢٠ «٢٠ «٢٠ «٢٠ «٢٠ Joint analyses of CMB lensing and shear constrain multiplicative bias to LSST requirements.

SO Collab., 2019 Schaan et al., 2017

Battaglia et al., 2017 Amodeo et al. 2021

Goals

	Parameter	$SO-Baseline^{b}$	$\mathbf{SO} ext{-}\mathbf{Baseline}^{c}$	$\operatorname{SO-Goal}^d$	Current ^e
		(no syst)			
Primordial	r	0.0024	0.003	0.002	0.03
perturbations	$e^{-2\tau} \mathcal{P}(k=0.2/\mathrm{Mpc})$	0.4%	$\mathbf{0.5\%}$	0.4%	3%
	$f_{ m NL}^{ m local}$	1.8	3	1	5
		1	2	1	
Relativistic species	$N_{ m eff}$	0.055	0.07	0.05	0.2
Neutrino mass	$\Sigma m_{ u}$	0.033	0.04	0.03	0.1
		0.035	0.04	0.03	
		0.036	0.05	0.04	
Deviations from Λ	$\sigma_8(z=1-2)$	1.2%	2 %	1%	7%
		1.2%	2 %	1%	
	$H_0 ~(\Lambda { m CDM})$	0.3	0.4	0.3	0.5
Galaxy evolution	$\eta_{\rm feedback}$	2%	3%	2%	50-100%
contraction of the second seco	needback Dnt	6%	8%	5%	50 - 100%
	Pill	0,0	070	0,0	00 100/0
Reionization	Δz	0.4	0.6	0.3	1.4

Goals

All these require combining LSST and SO!

-	Parameter	$\left \begin{array}{c} \mathrm{SO-Baseline}^\mathrm{b} \\ \mathrm{(no \ syst)} \end{array} \right $	${\bf SO-Baseline}^{\rm c}$	$\operatorname{SO-Goal}^{\mathrm{d}}$	Current ^e
Primordial perturbations	r $e^{-2 au} \mathcal{P}(k=0.2/\mathrm{Mpc})$	$0.0024 \\ 0.4\%$	0.003 0.5%	$0.002 \\ 0.4\%$	$0.03 \\ 3\%$
-	$f_{ m NL}^{ m local}$	1.8 1	$3 \\ 2$	1 1	5
Relativistic species	$N_{ m eff}$	0.055	0.07	0.05	0.2
Neutrino mass	$\Sigma m_{ u}$	$\begin{array}{c} 0.033 \\ 0.035 \\ 0.036 \end{array}$	$0.04 \\ 0.04 \\ 0.05$	$0.03 \\ 0.03 \\ 0.04$	0.1
Deviations from Λ	$\sigma_8(z=1-2)$ $H_0~(\Lambda { m CDM})$	$1.2\% \\ 1.2\% \\ 0.3$	2% 2% 0.4	$1\% \\ 1\% \\ 0.3$	7%
Galaxy evolution	$\eta_{ m feedback} \ p_{ m nt}$	$2\% \\ 6\%$	3% 8%	$2\% \\ 5\%$	50-100% 50-100%
Reionization	Δz	0.4	0.6	0.3	1.4

SO:UK

- Long track record of UK involvement in CMB experiments, both in instrumentation and analysis.
- Large number of UK-based active members of SO.
- SO:UK aims to be a consortium-level contribution to SO from the wider UK CMB community.
- Three main components:
 - <u>UK Data Centre</u> (deliver science-ready data for SO)
 - Pipeline algorithm development (e.g. map-making)
 - A single <u>KIDs LAT optics tube</u> at high-freq (demonstrate UK's expertise)
- Currently in STFC-funded Phase A study (tech demonstration and project planning).
- Will capitalize on existing analysis WG leadership role.
- Will position UK community optimally to do science with SO (and SO+LSST!).

SO:UK consortium: <u>Manchester</u> (Battye, **Brown**, Chluba, Piccirillo, Roddis), <u>Cardiff</u> (Ade, Calabrese, Doyle, Hargrave, Sudiwala, Tucker), <u>Cambridge</u> (Challinor, Ferguson, Shellard, Sherwin), <u>Oxford</u> (Alonso, Jones, Taylor), <u>Imperial</u> (Clements, Contaldi, Heavens, Jaffe), <u>Sussex</u> (Lewis).

KIDs array designed @ Cardiff