Asteroid Phase Curves with ATLAS, a Precursor to LSST

James Robinson j.e.robinson@qub.ac.uk

LSST:UK All Hands Meeting 12/05/21

ATLAS

https://atlas.fallingstar.com/

Mahlke et al. 2021

- Asteroid Terrestrial-impact Last Alert System (ATLAS) - two 0.5m telescopes in Hawaii
- Scans the visible night sky ever two nights, searching for hazardous NEOs
- Many transients are detected supernovae and main belt asteroids

Asteroid Phase Curves

Samuel Jackson www.open.edu

- Small bodies are compositional/dynamical tracers of Solar System Evolution
- Asteroid brightness changes with phase angle - phase curve models
- Phase curves give absolute magnitude H (~size) and G slope parameters (surface composition/structure)

Phase Curve Fitting

- Initial data cuts
- Iterative fit and clip (no parameter constraints unlike Mahlke et al. 2021)
- HG (Bowell et al. 1989)
- H,G1,G2 (Muinonen et al. 2010)
- H,G12 (Muinonen et al. 2010)
- H,G12 (Pentilla et al. 2016)

HG o filter Results

The future... (LSST)

Table 1. Summary of small body populations observed with LSST

Population	Currently know	$\operatorname{wn}^1 \operatorname{LS}$	SST discoverie	es ² Nu	m. of obervation	ns ³ Arc	c length $(years)^3$
Near Earth Objects (NEOs)	12,832		100,000		(H≤20) 90		7.0
Main Belt Asteroids (MBAs)	636,499		5,500,000		(H≤19) 200		8.5
Jupiter Trojans	6,387		280,000		(H≤16) 300		8.7
TransNeptunian and Scattered Disk Objects (TNOs and SDOs)	1,921		40,000		(H≼6) 450		8.5

Notes:

¹As reported by the MPC (May 2015). ²Expected at the end of LSST's ten years of operations. ³Median number of observations and observational arc length for the brightest objects near 100% completeness (as indicated).

Lynne Jones et al. 2015

- in 2014 2018 MPC obtained ~2e7 obs/yr, 5e6 from ATLAS in 2017 *
- LSST: 90% Wide-Fast-Deep, 18 000 deg², ~800 visits/field
- "In total, the LSST will obtain approximately 1.8 billion observations of 5.5 million objects over 10 years" (Lynne Jones et al 2020)

Phase curves with LSST

- Decent ATLAS phase curves for N_fit > 100
- LSST should have comparable cadence of observations:
 - ATLAS 4 detection tracklet per visit every 2 nights
 - LSST 2 (x2) detection tracklet per visit every few days
- LSST "objects with more than 100 observations are 1,400 NEAs, 1.6 million MBAs, 80,000 Jovian Trojans, and 11,000 TNOs" (The LSST Science Book)
- Phase angle coverage is key
- LSST will go faint, 16-24.5 mag in the r-band, accessing small bodies that are currently not well defined