> = LSST:UK Consortium

- g

> = LSST-UK Science Centre

D3.3.4 LSST to 4AMQST

communication

bridge

WP3.3 Spectroscopic classification of transients

Project Acronym

Project Title

LUSC-B

UK Involvement in the Legacy Survey of Space and Time

Document Number LUSC-B-43
Submission date 27/06/2023
Version 1.0

Status Final

Author(s) inc. insti-
tutional affiliation

Christopher Frohmaier (Southampton)
Mark Sullivan (Southampton)

Reviewer(s)

Stephen Smartt (Oxford)
Matt Nicholl (QUB)

Dissemination level

Public

This report may be distributed to any interested parties.

Copyright LSST:UK Consortium 2017

D3.3.4 LSST to 4MOST communication bridge

Version History

Version | Date Comments, Changes, Status Aut%mrs, Contributors,
Reviewers

0.1 05/MAY /2023 | First draft for review Chris Frohmaier

0.2 27/JUN/2023 | Updated following reviwer comments | Chris Frohmaier

1.0 21/JUL/2023 | Exec Group Approved

D3.3.4 LSST to 4MOST communication bridge

Table of Contents

Version History 2
1 Executive Summary 4
2 Introduction 5
2.1 Glossary of Acronyms 5
3 Requirements 6
3.1 Prefect Orchestration. e 6
3.1.1 flowSetting.yaml 6
4 The Pipeline 6
4.1 getlatestBatch() 7
4.2 Light curve analysis 7
4.2.1 chunkyAssign() 7
4.3 Transient Databases 7
4.4 Communicating with 4AMOST o o 8
5 Deployment 8
6 References 10
List of Figures
1 Flowchart of software logicin D3.3.4 11
2 A sample of the [tides_stage table 12
3 Prefect Agent screenshots. L L 12
4 The TiDES flow on the Prefect web client. Each green block represents a function
that was executed during this pipeline, with the horizontal length equal to the
execution time. The waterfall of many small tasks under an umbrella flow shows
the Dask parallel processing of transient light curves. Dependencies are shown by
arrows connecting tasks/flows, although not all dependencies are show if executed
outside the Prefect environment (e.g. PostgreSQL table operations). 13

List of Tables

D3.3.4 LSST to 4MOST communication bridge

1 Executive Summary

The Legacy Survey of Space and Time (LSST) and the 4m multi-object spectroscopic telescope
(4MOST) will commence operations in 2024. The Time-Domain Extragalactic Survey (TiDES)
on 4MOST will follow-up LSST discovered transients to obtain spectroscopic measurements
for tens-of-thousands of supernovae, galaxies, active-galactic nuclei (AGN), and strongly-lensed
systems. For the transients and their hosts, this data will allow us to map the astrophysical
diversity of cosmic explosions and measure the equation of state parameter for dark energy to
unprecedented precision. TiDES forms the basis of WP3.3: Spectroscopic classification of tran-
sients.

In D3.3.3 we produced a software product that interacted with the Lasair broker and ran a se-
lection function on the retrieved light curves. At the time of submission of D3.3.3[1], the Zwicky
Transient Facility (ZTF) had been undergoing maintenance for a number of weeks leaving us
unable to test the operation of the code on a real-time data stream. Instead, we used an archieve
of transients and simulated a dataflow. In this deliverable, D3.3.4, we implement the real-time
Kafka stream capabilities from Lasair and present our communication bridge to submit LSST
discovered transients into the 4AMOST system.

Our communication bridge is the link between any transient broker and 4MOST - although for
our purposes, we have developed it around the UK’s Lasair broker. Our software periodically
checks our TiDES Kafka stream on Lasair for new transients. The software ingests the transient
light curve and applies the D3.3.3 software products. The objects that meet this selection cri-
teria are stored in a PostgreSQL database that stages the transients before they are submitted
to AMOST. We then use the 4AMOST API (currently in proprietary development stages within
4MOST) to submit transients to the 4MOST observing queue. The 4MOST API returns the
status of the submitted transient and we update our system to keep in sync with the 4AMOST
database. The software pipeline is orchestrated using Prefect' and deployed on the Somerville
system. Given that LSST is still a number of years away, the development and testing has used
the ZTF data but with minimal tweaks we can adapt our software to work with LSST alerts.

"https://www.prefect.io/

https://www.prefect.io/

D3.3.4 LSST to 4MOST communication bridge

2 Introduction

The software presented in this deliverable will triage transients issued through a broker stream
and divert the desired events to 4MOST for spectroscopic follow-up. Work Package 3.3 focuses
on the spectroscopic classification of transient events from LSST using the 4AMOST /TiDES fa-
cility. The majority of extra-galactic transients discovered by LSST will be supernovae (SNe),
with Type Ia SNe playing the critical role in our cosmology analysis. AMOST /TiDES will survey
the entire southern sky, collecting spectra of transients and their hosts at an industrial scale,
unrivalled in volume by an contemporary facility. TiDES will not, however, dictate the over-
all strategy or any individual pointing of 4MOST during its operations, nor will TiDES know
precisely where 4MOST will observe on any given night. This means TiDES will need to be
ready with a target list to accommodate 4MOST observations where ever and whenever they
occur. It is, therefore, paramount that TiDES have the software capabilities to rapidly iden-
tify targets from the LSST real-time stream and pass these objects on for spectroscopic follow-up.

LSST is still under-construction, but the Zwicky Transient Facility (ZTF) and the Lasair bro-
ker act as our development services with the intent to scale-up operations for LSST. In this
document we present our software that links the ZTF(LSST) data streams with the TiDES
selection functions, and the passes objects on to the 4MOST observing queue. Our soft-
ware has been deployed and runs on the Somerville HPC system. This software is not in-
tended to run locally on a users machine (although it will if desired). Finally, the software
uses the 4AMOST Transient API, this is a RESTful API with a python wrapper that is still
being refined with the 4dMOST collaboration and subject to changes. It is not included in
this deliverable, but the packages are imported into our code. Within the TiDES area of
Somerville a user can find all the necessary python libraries to execute the software. All the
code presented in this document are available from the following GitHub repository: https:
//github.com/lsst-uk/tidesInterface-WP3.3/tree/main/tidesCommunicate

2.1 Glossary of Acronyms

4MOST 4m Multi-Object Spectroscopic Telescope
DESC Dark EnergyScience Collaboration
LSST Legacy Survey of Space and Time

OB Observing Block
TiDES Time-Domain Extragalactic Survey
ZTF Zwicky Transient Facility

https://github.com/lsst-uk/tidesInterface-WP3.3/tree/main/tidesCommunicate
https://github.com/lsst-uk/tidesInterface-WP3.3/tree/main/tidesCommunicate

D3.3.4 LSST to 4MOST communication bridge

3 Requirements

This code is written predominantly in the Python language (v3.10.9 for development), the

database management scripts are written in SQL and managed in 'Postgres v15.1. Standard,
prepackaged Python libraries are used, but the following libraries must be installed:

lasair==0.0.5
prefect==2.8.3
prefect -dask==0.2.3
jsonb

PyYAML==6.0
pandas==1.5.2
SQLAlchemy==1.4.46
numpy

Furthermore, the 4MOST Transient API is used, but this is currently private to authorised
AMOST users. This appears as import submit_transients as st in the main body code.

3.1 Prefect Orchestration
3.1.1 flowSetting.yaml

There are several settings in the pipeline that can be customised via a YAML file. An example
of the contents of the parameter file is shown below. The first three settings are all related

to the communication with Lasair’. The topic setting holds the Lasair filter you wish to

pull your targets from, the 'groupID specifics your ‘bookmark’ in the Kafka stream — using
a consistent number means your next call to Lasair picks up from where you left off. The
lasairToken parameter is your API key to access Lasair services. The selectFunctionPath
and selectFunction keys represent the selection functions described in D3.3.3[1]. Finally, the
pipeline requires a PostgreSQL database installed to stage the transients and to sync with the
4MOST OB database, the access credentials are provided in the final three parameters.

devConfig:
topic: lasair_19tidesSelect
groupID: 123456
lasairToken: Cb6442e76373g2M7bwjd738ae1c946d54b8£f7993
selectFunctionPath: ./path/to/tidesSelectionFunctions.yml
selectFunction: tidesSNZTFSelectDEMO1
tidesDBUser: username
tidesDBpass: tidesDBpassword
tidesDBdatabase: tides

4 The Pipeline

The pipeline in this deliverable is shown in the flowchart schematic in Figure 1. The code is
hosted on the Somerville compute resource on a TiDES virtual machine (VM). At this stage of
development, the VM is relatively modest - 4 CPU cores, 16GB RAM, and access to 15TB of
storage shared between all TiDES projects. Our development environment currently listens to
the ZTF data alerts as brokered by Lasair, the resources we’ve allocated the VM is sufficient to
process this stream. As we will see in Section 4.2.1, the batch processing of transient light curves
is performed by the Dask Client, allowing for resource to be scaled to meet the requirements of
an LSST data stream. We would like to note that in D3.3.3 our selection function code ran on a
single core and processed transients in series. We stated that with a small amount of additional

Zhttps:/ /lasair.readthedocs.io/en/main /index.html

https://lasair.readthedocs.io/en/main/index.html

D3.3.4 LSST to 4MOST communication bridge

effort we would be able to re-write a section of the code to be parallelisable, in this deliverable
we have achieved that goal.

In the following Sections we go through the key stages of the pipeline’s execution. The pipeline
is orchestrated using the Prefect system of @flow and @task decorators in the Python code.
A Flow is a container for workflow logic, can handle data input, execute work, and output
results, they operate just like a function in Python. Tasks are small discrete units of work
— again acting just like Python functions — that are able to receive metadata about upstream
dependencies before they are executed, allowing for tasks to trigger from other task dependencies
when needed. Strictly speaking, this workflow logic can be executed using just @flow logic,
although in this pipeline we use both.

4.1 getlatestBatch()

This function interacts with the Lasair Kafka stream for the topic described in Section 3.1.1. It
receives a new transient for each call to the stream, if the consumer doesn’t get a response for
5 seconds it assumes all recent transients have been received, or if the queue is empty then our
pipeline is up to date. In the event of the latter, the pipeline terminates with a successful exit
status. Data from Lasair are received in the JSON format, and once completed these packets
are converted into a Pandas DataFrame and parsed through the rest of the pipeline.

4.2 Light curve analysis

The Lasair API can, at most, retrieve 50 light curve from a single API call. Furthermore,
there is limit on the number of API calls per day, we therefore make more efficient use of
our API allocation by splitting our transients up into arrays of 50 transients per API call in
the function 'splitIntoChunks() , this then feeds into the chunkyAssign() flow decorated
function associated with a Dask Client. At this point, we have light curves for all our transients
held in local memory.

4.2.1 chunkyAssign()

This function interacts with the a DASK client. All the transients light curves are submitted
into the task pool. The Dask client will use all allocated resources to process the light curves
in parallel using the lightCurveSatisfy() task. This step performs the D3.3.3[1] products
to compare any transient light curve to a user defined selection function. Each transient is then
assigned a True or False flag based on whether or not is satisfied the selection criteria.

4.3 Transient Databases

At this point in the pipeline, we move from Python-centric code to the execution of SQL scripts
to manage the data. From Section 4.2.1, all transients that receive a [True flag are automati-
cally sent to a temporary PostgreSQL table called tides_stage . As the name suggests, this
is the staging area for these transients in preparation to be sent to 4AMOST. A sample of the
tides_stage table is shown in Figure 2, where it can be seen that the ZTF alert packet and
Lasair value-added data are included as columns in this table. As this is only a temporary table,
it exists for the duration of the session and is automatically wiped when the database connection
closed at the end of the pipeline.

All data that has ever satisfied a selection function is stored in the tides_master table, where
each object receives a unique Primary Key identifier and timestamps denoting the object’s cre-
ation and the date the object was last manipulated. There is also a column for the object’s
4MOST Primary Key, which we will discuss in Section 4.4.

D3.3.4 LSST to 4MOST communication bridge

The upsertToMaster () function is executed on the tides_stage and tides_master tables.

In SQL, the UPSERT statement will either UPDATE a table if a key match is made or INSERT
a new row if there is no match. Updates include information in the latest observations such as
magnitude, observation dates, or Sherlock classifications. For our context, we UPSERT data
from tides_stage into tides_master .

Our communication bridge to 4MOST is not just for sending new targets. We also need to do
some general housekeeping to remove objects that either haven’t been observed by LSST in a
user defined number of days, or that have faded below the magnitude limit of 4AMOST. This is
performed via the deactivateUnobservedTransients() task and simply changes the active
flag in the tides_master table.

The objects identified by our scripts as new transients, or transients just updated, or transients
needing to be deactivated are all pulled from their relevant tables and held in a Pandas Dataframe
we refer to as 4MOST Stage in Figure 1.

4.4 Communicating with 4MOST

We now have all the information necessary to interact with the AMOST database to include our
transients in the observing plans. To achieve this, we use the 4MOST Transient RESTful API
which provides a full CRUD service (Create, Retrieve, Update, Delete). The service is still under
development by 4MOST, although the way in which we interact with the API will remain fixed,
the exact columns in the database are still subject to change too. There is a beta version for a
python wrapper that we use in this deliverable, but it remains private to 4AMOST membership.
Finally, an API key is needed and only made available to the 4AMOST members who request it.

Two python functions run on our 4MOST Stage table. The first, createNewTransientin4MOST() ,
sends the new transients to the AMOST PostgreSQL database and for each new entry the pri-
mary key for the new event is returned. The second function, updateExisitingTransient() ,
updates 4MOST with the latest information on the transient’s current status and, if neces-
sary, deactivates the event’s flag in their database. Deactivated events remain in the 4MOST
database, but will not be selected by the 4MOST target scheduler for observation.

The pipeline then performs its final task by updating the tides_master table with all the new
primary keys from 4MOST so that both the AMOST and TiDES databases are sync-ed with the
same information.

5 Deployment

As mentioned throughout, the pipeline is orchestrated by Prefect. Prefect Flows can be sched-
uled to run based on time intervals (similar to Cron jobs), hooks (i.e. triggered by external
events), or at the users discretion either through just running the python script or a web inter-
face. The Prefect Agent is a continuously running process in the background on the TiDES VM
that looks for work via one of the methods mentioned above. A screenshot of our agent running
on Somerville and an example of our scheduler are shown in Figure 3.

When the code is triggered, a real-time flowchart is visualised in the Prefect web portal to
document the pipeline’s execution progress. A screenshot of a recently completed flow can be
found in Figure 4, although a more useful animation of how the flow progresses and how it can
be interacted with is shown in the GitHub repo®. This portal can either be hosted locally or
deployed into the cloud. For development purposes the cloud version was used due to the ease of

Shttps://github.com/lsst-uk/tidesInterface-WP3.3/tree/main/tidesCommunicate

https://github.com/lsst-uk/tidesInterface-WP3.3/tree/main/tidesCommunicate

D3.3.4 LSST to 4MOST communication bridge

setting this up. However, there are several drawbacks to a free-tier cloud account, including only
7 days of execution history recorded and only 1 user able to manage the deployment. During
Phase C, we will switch to a Somerville-hosted Prefect Agent and Deployment so that anyone
in TiDES can monitor the pipeline and it’s history recorded for the full 5-years of operations.

Our pipeline has been running on Somervile for a couple of weeks and performing as expected.
The only problem we have encountered is when the connection drops to the Prefect Agent it
must be manually restarted. This happens about every 24 hours and we currently believe it is
a Somerville issue assuming our virtual machine is inactive as no users are logged in. It should
be noted that this doesn’t happen when the agent was hosted on a desktop during development
and left for a longer period — of course, this is not a solution for the LSST-era. We are currently
investigating solutions.

Update 27 Jun 2023: This bug has been fixed and was traced to an httpcore library.

This can be resolved via the environment variable | PREFECT_API_ENABLE_HTTP2=False or by
upgrading to the latest httpcore .

However, the issue of the Somerville system’s stability still remains a risk as highlighted in
the reviewer comments. Our deployment ran for a couple of weeks without issue, however a
maintenance upgrade of Somerville killed our Prefect Agent. It was a number of days before I
noticed and had to manually reboot. This would not be good news in the LSST era and the
data backlog would build up very quickly. This should be added to our Risk Management.

D3.3.4 LSST to 4MOST communication bridge

6 References

References

[1] LSST/TiDES Metrics Software, Project Deliverable D3.3.3

10

D3.3.4 LSST to 4AMOST communication bridge

LSST - TiDES - 4MOST
Data Flow Concept

flowSettings.yaml

. loadTopicSettings()
TiDES

Lasair Kafka Stream

loadSelectionFunctionDetails()
getlatestBatch()

chunkyAssign()

Temporary table

lightCurveSatisfy()-0

Does lightcurve
TiDES Stage < Yes meet selection
criteria?

Transient
active=True in

4MOST database

lightCurveSatisfy(-N

upsertToMaster()

New transients
- + Observed by LSST within
Updated transients last X days and above
magnitude limit?

No
set active=False

A >
/ 4MOST Stage
—_—

p—

Updated transients

updateExisitingTransient()

New transients:

o 4 TiDES Master

returnin

4MOST OB
Database

4MOST _Primary_Key

Figure 1: The flowchart describing the logic of D3.3.4. External Lasair products are shown in
grey, SQL databases are shown in orange, python functions and SQL scripts are in
blue, with selection decisions in purple.

11

tides-
objectid |

ZTF23aadcidf | 294.8941502111111

7530369399995
231.06514781818177
16666664

129.59213659411768
253.99403724117644
259.22574341515156

SELECT * from tides_stage limit 50;

decmean

49.31421364444444
57.554063532
72.6550033368421
-8.306708626666666
20.181128111111107

1.
69.68988825476191
46.10644610999999
39.45476901428571

546

4.382509558823529
2050646
44.268170272727275

50. 3180093666667

D3.3.4 LSST to 4MOST communication bridge

2460043 8035301
2460042, 7644097
2460042, 8842361
2460037, 0099421
2460042, 8832755
24¢

60042 7
2460042.,9320255
2460053, 9468519

2460042973044
2460042, 8930671

2460036, 7895602
2460043, 6899769

2460067.9262963

2460065, 9730556
2460065, 9693866
2460065, 9513773
2460065, 9498958
2460065, 9494213

classification |

2023-05-03.
2023-05-03
2023-05-03
2023-05-03
2023-05-03
2023-05-03.
2023-05-03 15:03:16
2023-05-03. 16

7809606 2023-05-03 15:03:16

2460065 . 2023-05-03 1! 16

2460063.9052315 2023-05-01 12:56:29
2023-05-01
2023-05-01
2023-05-01
2023-05-01
2023-05-01
2023-05-01
2023-05-01
2023-05-01
2023-05-01 08:49:35
2023-05-01 0
2023-05-01 08:49:35
2023-05-01 00
2023-05-01 08:49:35
2023-05-01 00
2073-05-01 06:11:41
2073-05-01
2073-05-01
2073-05-01
2023-05-01 0!
2023-05-01 @
2023-05-01 @
2023-05-01 05:.
2023-05-01 05:20:00
2023-05-01 05:46:28
2023-05-01 05:20:00
2023-05-01 05:20:00
2023-05-01 0!
2023-05-01 05:20:00

2460061691875
2460064.9583796

2023-04-30 13:53:41

ZTF23aadcidf

ZTF23aacdlsh
ZTF21abddssz
ZTF23aadcben

60.95867750000001
49.29617851578948

2023-04-30 1:
2023-04-30 14:16:43

ZTF23aadslye
[€ D]

279.9558034157895 2460042,9031713 | 2460064.9695718 | 19,4477 | 19.4223 | 19.5488 | 20.4196 | 2460064.9695718 | 2460062.9729398 ZTF23aadslye

Figure 2: A sample of the tides_stage table

Scheduling

(tides_comm) chrisfro@tides-communicate:~/tidesInterface-WP3.3/tidesCommunicate$ prefect agent

start -p "lsstuk” Schedule
Starting v2.8.3 agent connected to .
Sy A R P ey AP IR IE A Sy v ey sy s Hourly from Apr 20th, 2023 at 05:30:20 PM (UTC)
-909¢-4e32-ae00-5cbO34b3F Ffd "
e asiae # Edit i Remove
Scheduler

«©

Agent started! Looking for work from work pool 'lsstuk'...

(a) The Prefect Agent is looking for work! (b) The scheduler via the online interface shows that

our Flow will be triggered every hour.

Figure 3: Prefect Agent screenshots.

12

D3.3.4 LSST to 4MOST communication bridge

' = 1 1 1 1 » 1= 1 1
i 1 1 1 1 1 1 [1 1
iU 1 1] 1] 1 [1
1 1- 1 [1 1 [] 1] 1
e] 1 [] -]] [
I 1 1 1 1 1 B 1 =
e 1] [1 (= 1- 1 1
[1 1 1 1 1 1 1 1
(= 1 [I~ [= [] [
1 1 1]] [1 1 1
] - 1]] 1 [1 (=
[[1] [1 1 1 [
| e (= [[1- [= [1- 1
1 1] - 1 [1 1]
1] 1 1 1] 1- 1 1
1 [B LS [K 1 1 [B [B 1
1 1 1- 1 1 1] 1- 1
[B= 1- 1-] 1]] 1 [
1 1 [1 1 1 1] 1-
1 1 [1 1 [" []
|] 1 1 1 1] 1 n- 1
| "] 1-] 1] 1 1 1
1 1 1 = [} 1 1 I- [
1 (= 1] (= 1 [¥ [
1 1 1 1 - 1 1 [1
] | B]] | B8 []] 1]
| 1 (B 1 1]] 1 [|
1 1 [[(= - [[1
| 1 1 1 [1 1 1 1 1
"] - [- (=] - -
1 1 1 1 1 1 1 (= 1
] 1 1 1 [1 1 I I
] 1 = 1 [-] []
1 I- 1 [| | 1 1- 1-
]] 1 1 e] 1 1 1
1 1 1 1 [] 1 1
L] | Ry [R L 1 - - L] L B
1 1 1 1 1 e] [- 1
I- 1 1 1 [1] 1
1 1 1 1 1 1 1 1
1 1] [[P 1
[1 [[1 1 1
[1 [[1 1
1 L] 0 e 1 1 1
[1 [1 1 [
] 1 1o 1 1 1
] ¥- [-]
1 1 [1
1
1
1
1
I-
[Y- - T
E— A
1
1

Figure 4: The TiDES flow on the Prefect web client. Each green block represents a function that
was executed during this pipeline, with the horizontal length equal to the execution
time. The waterfall of many small tasks under an umbrella flow shows the Dask parallel

processing of transient light curves. Dependencies are shown by arrows connecting

tasks/flows, although not all dependencies are show if executed outside the Prefect
environment (e.g. PostgreSQL table operations).

13

	Version History
	Executive Summary
	Introduction
	Glossary of Acronyms

	Requirements
	Prefect Orchestration
	flowSetting.yaml

	The Pipeline
	lightgray|getlatestBatch()|
	Light curve analysis
	lightgray|chunkyAssign()|

	Transient Databases
	Communicating with 4MOST

	Deployment
	References

