
D3.11.4: Report on the Preparation
for Full-Scale DAC Matches

WP3.11: Cross-Matching and Astrometry at LSST Depths

Project Acronym LUSC-B

Project Title UK Involvement in the Legacy Survey of Space and Time

Document Number LUSC-B-37

Submission date 31/JAN/2023

Version 1.0

Status Final

Author(s) inc. insti-
tutional affiliation

Tom J Wilson (University of Exeter)
Tim Naylor (University of Exeter)

Reviewer(s)
Bob Mann (UEDIN),
Raphael Shirley (SOTON)

Dissemination level

Public

Copyright LSST:UK Consortium 2023

D3.11.4: Report on the Preparation for Full-Scale DAC Matches

Version History

Version Date Comments, Changes, Status
Authors, Contributors,
Reviewers

0.1 30/01/23 Initial draft TJW

0.2 31/01/23
Minor updates, document number,
SRD numbers

TJW

0.3 31/01/23 Grammar check, language change etc. TN & TJW

0.4 14/03/23
Added extra details, expanded sec-
tions, grammar fixes

TJW

1.0 27/04/23
Approved by LSST:UK Executive
Committee

TJW & TN

2

D3.11.4: Report on the Preparation for Full-Scale DAC Matches

Table of Contents

Version History 2

1. Executive Summary 4

2. Introduction 5
2.1. Glossary of Acronyms . 5

3. Run Timescales and MPI Parallelisation 7

4. macauff 8
4.1. Code Extensions . 8

4.1.1. Galaxy Counts Model . 8
4.1.2. Background-Dominated PSF Photometry Perturbations 9
4.1.3. Documentation . 11
4.1.4. Unknown Proper Motions . 13

4.2. Astrometry Bias Derivation . 14

5. DAC-DEV Workflow and All-Sky Matches 17

6. Future Work and Phase C 19

Annex A. Software Architecture 22

List of Figures

1. Schematic of MPI-based sky chunk decomposition. 8
2. An example use of the flexible galaxy counts model used within macauff. 9
3. Implementation of new background-dominated PSF photometry algorithm and

its weighting with a flux-weighted scheme. 10
4. Example of new documentation available within macauff. 12
5. Potential proper motions of an object with particular coordinates and brightness

but no measured sky motion. 14
6. Figures showing aspects of AstrometricCorrections, along with Figure 3. . . . 15
7. A few lines of outputs from match and non-match tables as produced by macauff. 18

List of Tables

3

D3.11.4: Report on the Preparation for Full-Scale DAC Matches

1. Executive Summary

The goal of WP3.11, Cross-Matching and Astrometry at LSST Depths, is to create a cross-match
tool through which common detections can be identified between LSST objects and sources in
numerous other (non-LSST) datasets. Alongside identifying matches, the generated products
should be able to report on the probability of such a match (to identify unreliable assignments
for users), and provide key derived secondary information such as is necessary or useful for the
astronomer.

Until now each deliverable has extended this cross-match functionality. This began with a
“simple” Bayesian cross-match and we then added to the algorithms to include those needed to
overcome the systematic effects such as the effects of hidden, unresolved contaminant objects
on the positions of sources, or the inclusion of photometric information in the discernment of
“false positive” matches. By contrast this deliverable, D3.11.4, reports the efforts of WP3.11 to
accomplish the goal of performing matches, rather than making a match-capable software.

This report summarises those efforts, a three-pronged work. First, the incorporation of previous
testing which identified the need to increase the scope of parallelisation within the codebase to
reduce total runtimes. Second, the inclusion of additional software to ensure that the matches
are both precise and accurate in their reported match likelihoods. Finally the beginning of “full
scale” matches, running all-sky tests and simulating the wider workflow with the DAC team
in which catalogues are generated, matched, and the consolidated results ingested into the UK
DAC for access by in the community the UK RSP.

Where relevant, we will include reference to the Science Requirement Document items for
WP3.11, R11.X.

4

https://lsst-uk.atlassian.net/wiki/spaces/LUSCSWG/pages/614465537/LSST%2BUK%2BScience%2BRequirements%2BDocument

D3.11.4: Report on the Preparation for Full-Scale DAC Matches

2. Introduction

WP3.11 is charged with both the understanding of LSST’s astrometry and the knowledge of
how to robustly match (R11.1, R11.5), and the creation of software (R11.3, R11.6-7) to match,
its data releases to a wide range of photometric catalogues at complementary dynamic ranges,
wavelengths, angular resolutions etc. The purpose of performing these value-added calculations
is that the science generated from combining both datasets should be greater than the sum from
just the individual surveys.

This charge is then broken down into two main areas. First, WP3.11 built upon work previously
done [1, 2, 3] to understand the effects of crowding on LSST objects – in which high densities of
sources (relative to the size of the PSF) cause overlapping objects. Hence fainter objects “hide”
within the footprint of brighter objects, causing second-order changes to measured positions
and brightnesses of the objects as compared with the case of an isolated, single source. This
was chiefly the focus of D3.11.1, extending the mathematics used to describe these astrometric
“tugs” to key areas appropriate to faint LSST sources. Second, WP3.11 had to build the software
involved in performing these matches. This was the focus of D3.11.2 and D3.11.3, building slowly
from a simple Bayesian match, with no complications to the astrometry of sources, to a larger-
scale, full match service appropriate to crowded LSST fields, both including the effects of hidden
contaminant objects on the positions of objects but also using the magnitudes of sources in both
catalogues to reject false “interloper” matches1.

Therefore, as we began work on D3.11.4, we had an almost-complete software, but little proven
confidence in its smooth operation, outside of limited trial runs and unit tests within the soft-
ware itself. We began focusing on the overall workflow of the system, deploying the software
on CSD3. Testing then quickly revealed that LSST-scale matches were not currently achievable
within reasonable timescales with single-node compute; hence we implemented MPI parallelisa-
tion within the codebase, and extended the software to handle the split-and-join technique for
distributed processing. Finally, we continued to improve and extend the cross-match software,
the chief development of which is a parallel piece of software, outside of the main “cross-match”
framework but crucial for its ability to report precise and accurate match likelihoods, account-
ing for potential systematic biases in reported astrometric uncertainties in the input catalogues
(R11.5).

Surrounding all of this work, we have also begun ramping up efforts to engage with the wider
community, chiefly the TVS and SMWLV Science Communities as the recipients of our In-Kind
Contribution to LSST and the astronomers most affected by LSST crowding. Here we solicited
feedback on the wider workflow that both the development team and the future team members
from the UK DAC who will run the software during LSST operations will run. Largely a case
of “which catalogues would you like to see cross-matched against LSST?,” this dialogue ensures
that in the case of limited HPC facility time we are optimising the scientific yield of our efforts.
As this is a slow-burning project that is still in its early days, we limit discussion to the “future
works” section at the end of the report.

2.1. Glossary of Acronyms

LSST - Legacy Survey of Space and Time
RSP - Rubin Science Platform
PSF - Point Spread Function
CSD3 - The Cambridge Service for Data Driven Discovery

1These are objects serendipitously close to an opposing catalogue source which may incorrectly be assigned as
the match, but for the brightnesses being “wrong” as compared with the ensemble of potential matches.

5

D3.11.4: Report on the Preparation for Full-Scale DAC Matches

AUF - Astrometric Uncertainty Function
MPI - the Message Passing Interface
DAC - Data Access Centre
DEV - LSST:UK Development work package
TVS - Transient and Variable Star
SMWLV - Stars, Milky Way, and Local Volume
SNR - signal-to-noise ratio

6

D3.11.4: Report on the Preparation for Full-Scale DAC Matches

3. Run Timescales and MPI Parallelisation

We had run preliminary cross-matches of small-scale catalogues during previous testing[4]. Tak-
ing a small region of sky, both approximately 1% in sky area and source numbers, and profiling
an earlier but fully-functioning version of macauff we examined the scaling relations of each
of the four main stages in the matching process (additional AUF calculations, source grouping
or “island” determination, photometric likelihood calculations, and best-match determination).
Ultimately we concluded that the typical scaling was linear with total number of objects (for
a fixed area) for matching steps 2-4, with the first step approximately flat in runtime (being
simulation based and thus independent of source density for the most part).

However, with our code already slower than other methods due to needing complex algorithms
and non-analytic solutions because of the crowding component of the AUF, we realised the soft-
ware as it was would become intractable when scaled from Gaia dataset size (∼ 2 billion objects
in the full sky) to LSST (∼ 30 billion objects in the southern sky). Despite the reasonable linear
scaling relation, the 15–30-fold increase in source counts in the era of LSST meant that absolute
runtimes would fail to meet our required several week turn-around timescales for publishing
cross-matches for a new LSST Data Release. Hence we could no longer rely on our previous
computational toolkit (Python’s multiprocessing and Fortran’s OpenMP) to run things in a
“reasonable” time. We therefore had to change our previous vision for the scale of computation
necessary for the LSST cross-matches, and implement an MPI-based, multi-node distribution of
parallel matches.

With the assistance of Dominic Sloan-Murphy for an efficient and effective implementation, our
codebase now accepts the so-called chunk “core” and “halo” model, in which a larger region
is broken down into small parts and each processed separately (see Figure 1 for an example
schematic). Here the sky is divided into small regions, each of which exactly divide the sky into
(roughly even) patches of sky (red squares, Figure 1), with slightly larger squares, centered on
the same central point as the “core” patch, adding additional objects (black squares, Figure 1).
With the objects in one chunk’s halo being in the core of another chunk, this does require a final
step to the matching process where these duplicates are filtered out, but the advantages of being
able to use distributed, multi-node HPC facility time to gain significant (of order 100-200x)
speedup vastly outweigh this extra complication.

In addition, in the new paradigm where an all-sky match is broken up before match instead of
during a match – i.e., in the creation of small chunks each of which are cross-matched separately,
instead of attempting to load small parts of one giant all-sky “chunk” within the matching steps –
we no longer require the sidestepping of memory issues and can run a match directly in memory,
significantly improving bottlenecks from disk I/O. To create these chunks we have chosen to
use the LSST partitioning software, which not only avoids unnecessary software development
effort on our end but also conveniently means our cross-match patches can be on the same
mapping as the pre-partitioned LSST data ingested as part of DAC ingestion into the RSP,
which offers significant speedup advantages if data are correctly loaded into node memory.
Performing subsequent scaling tests on the efficiency of the parallelism, we found that CPU idle
time was limited across nodes, with 80-90% theoretical efficiency in most combinations of node
number and task-per-node, with MPI handling the division of labour of each chunk to a node
(or fraction of a node), and OpenMP still handling the intra-match parallelisation.

With this, our code ought to be capable of matching LSST and ancillary datasets within the
timescale of a few days, much improved over both our initial estimate and our set goal.

7

D3.11.4: Report on the Preparation for Full-Scale DAC Matches

Figure 1: Schematic of MPI-based sky chunk decomposition. In the multi-node compute
paradigm the sky is split up ahead of time, and each “chunk” runs a small part of the
sky in parallel, each node free to use its own processors for smaller-scale parallelisation.
Small overlaps are necessary to catch edge-case matches, using a “core” (red squares)
and “halo” (black/grey squares, slightly larger than the red squares) model; this ne-
cessitates the reconciliation of duplicated objects (in one chunk’s core and another’s
halo) to avoid conflicting reports of match vs non-match, match probability etc.

4. macauff

4.1. Code Extensions

Since D3.11.3 there have been numerous extensions to macauff (see Appendix A for details of its
structure and format). In addition to various bugfixes and optimisations “under the hood,” there
have been several key advancements of the functionality of the software, described in more detail
below. All of these improvements and extensions are available at https://github.com/Onoddil/macauff.

4.1.1. Galaxy Counts Model

A flexible model for galaxy counts has been added to the code, to allow for the simulation of
extragalactic unresolved perturbers outside of the Galactic plane (R11.2-3).

It is a meta-model, effectively collating previous results and generalising the parameterisations.
We approximate the spatial density of galaxies as a function of (absolute) magnitude with a
simple Schechter function

φ(M, z) = 0.4 ln(10)φ∗
[
10−0.4(M−M∗)

]α+1
× exp

(
−10−0.4(M−M∗)

)
, (1)

with M∗ the “characteristic” absolute magnitude, α the faint-end power-law slope, and φ∗

a normalizing parameter, with each a function of redshift via further parameters P and Q.
Literature data these five variables are then fit as a function of wavelength for both star-forming

8

https://lsst-uk.atlassian.net/wiki/download/attachments/1146928/LUSC-B16-D3.11.3-Demo-Full-DAC-Integrable.pdf?api=v2
https://github.com/Onoddil/macauff/tree/419db2f596a4ec99d56e784fb75de9da8c3e6ad8

D3.11.4: Report on the Preparation for Full-Scale DAC Matches

Figure 2: An example use of the flexible galaxy counts model used within macauff. Comparison
between the model (solid black line) and example literature source density (crosses),
with different redshift bin contributions shown in the solid colour lines below the data.

and quiescent (“blue” and “red”) galaxies, such that differential galaxy counts can be derived in
any chosen bandpass. An example, converted from spatial density to on-sky density, is shown in
Figure 2, plotted against an observed distribution of galaxy counts, highlighting the components
from different redshift bins in the lower lines of varying colours. The results were published[5]
and the code implemented, adding to existing code that calculates Galactic source counts. This
ensures that the source density of potential unresolved contaminant objects is as precise and
accurate as possible within the codebase, making the perturbation component of the AUF as
robust as possible at all sky coordinates.

4.1.2. Background-Dominated PSF Photometry Perturbations

The new methodology for calculating the effects of blended contaminant sources in PSF pho-
tometry for background-dominated detections was implemented. This follows the theoretical
method previously laid out in D3.11.1. A new Class was added to derive its parameterisation
and perturbation auf.py extended to include its determination and weighting (R11.1, R11.3,
R11.5).

Up to now, we have only been using what we refer to as a “flux-weighted” perturbation algorithm,
in which both the bright central source and all hidden contaminants are treated as point sources.
The position of the composite object is then the flux-weighted average of all point sources
within the bright object’s PSF. In PSF photometry, the astrometric effect of the contaminant
sources should be weighted by the value of the PSF at all positions around each object, both
contaminating and central, and hence the point-source approximation does not apply. Describing
this effect is quite difficult analytically across the entire dynamic range of a catalogue, but at
lower SNR the problem becomes tractable. This is because when the source is sufficiently faint
the dominant source of noise in the astronomical image from which the photometric catalogues
is built is from the sky and not the object, and hence all pixels in the image should have roughly

9

https://lsst-uk.atlassian.net/wiki/download/attachments/1146928/LUSC-B-08-D3.11.1.pdf?api=v2

D3.11.4: Report on the Preparation for Full-Scale DAC Matches

Figure 3: Implementation of new background-dominated PSF photometry algorithm and its
weighting with a flux-weighted scheme. Black errorbars show an ensemble of sepa-
rations between Gaia and CatWISE data, all for a small sky region and astrometric
precision, effectively representing an empirical AUF. Six AUFs are shown overlaid.
Dash-dot lines show the original flux-weighted algorithm AUF and dotted lines show
the new PSF-fit algorithm AUF, with solid lines showing the weighting of the two
valid for the magnitude of these sources. The three versions of the perturbation
component of the AUF are combined with two respective astrometric centroid pre-
cisions (quoted catalogue value, black lines, and best-fit value determined through
AstrometricCorrections in red). We desire the centroid precision that combines
with the H-weighted perturbation AUF components to fit the data the best, and
the solid red line is the only one of the six potential AUFs that fits the data, and
hence represents the data-driven AUF. The green line shows the probability density
for false matches, used to fit for false positive matches in cases of incorrect counterpart
assignment in the creation of the cross-matched ensemble.

10

D3.11.4: Report on the Preparation for Full-Scale DAC Matches

the same noise. This low SNR regime is frequently referred to as the “background-dominated”
regime for this reason.

The “flux-weighted” model is primarily valid in the case of aperture photometry being used to
determine the positions and brightnesses of objects in a catalogue, but we previously found it also
applies in the case of bright, high SNR objects that were fit with a PSF photometry algorithm.
Hence in cases where photometric catalogues were constructed using PSF photometry we have
two valid algorithms, one that is valid at high SNRs and one that is valid at low SNRs. At
intermediate SNRs, there will be some hand-off between these two algorithms.

Building off previous work[6], the PSF photometry method for determining the centre-of-light
shift from an unresolved contaminant perturbing the measured position of a brighter source
is based on fitting a composite two-PSF source with a single PSF model. Through a simple
least-squares minimisation routine, in the limit – appropriate for most faint LSST sources, and
assumed by the Rubin Pipeline[7] – that noise in the image is constant, we are essentially solving

logL = −1

2
× L

∞∫
−∞

[φ(r) + fφ(r− d)− (1 + ∆f)φ(r−∆d)]2 d2r. (2)

φ is the PSF model, and we wish to know what ∆d, the perturbation due to the contaminating
source, is (as well, potentially, as ∆f , the brightening of the reported flux due to the hidden
source).

Expanding and solving the equation allows for an approximation in the limit of a faint perturber,
as previously calculated, but here we extend the model to approximate the effect of objects of
tens of percent the relative flux of the bright central source. Making the assumption that the
perturbation from multiple objects can be split into a vector sum of their individual contribu-
tions, we modelled the astrometric perturbation and photometric brightening of the two-body
composite source as a function of the contaminant’s relative position and flux. We then even-
tually reduced the problem to a series of parametrised spline fits that feed into a skew-normal
distribution.

Now armed with two methods for determining the perturbation to the position of an object due to
hidden contaminant sources, we can better describe the AUF at all SNRs by a combination of the
two methods. An example of this, within AstrometricCorrections (discussed in Section 4.2), is
shown in Figure 3. Here H is the weighting between our original flux-weighted (naive assumption
that all objects are point sources, or have infinite SNR) and new, PSF-fitting algorithms, with
the former shown in dash-dot lines and the latter in dotted lines (for two different centroid
precisions). The weighting between the two is used in intermediate SNR regimes, with the flux-
weighted algorithm valid at effectively infinite SNR and the background-dominated case valid
when the SNR tends to zero. When combined with the centroid2 uncertainty of the objects
(with all sources in Figure 3 having roughly the same positional precision) the total AUF should
overlay the distribution of separations between our WISE and Gaia data – equivalent to looking
at the deviations from “true” position for the WISE data.

4.1.3. Documentation

Documentation has been significantly expanded, now detailing all input parameters but also
describing the mathematical algorithms used within the match process and including more
information on the “before” and “after” stages of matching (R11.3).

2Here the “centroid” uncertainties are the precisions with which the given position of a source was determined
on the detector.

11

D3.11.4: Report on the Preparation for Full-Scale DAC Matches

Figure 4: Example of new documentation available within macauff at
https://onoddil.github.io/macauff/.

Expanding the previously written documentation – both improving what was written, and
adding to existing documentation to make it clearer to understand – we

1. expanded the descriptions of installation of the software, both to make them easier to follow
but also to keep up with upstream changes from dependencies and testing environments,

2. updated the “docstrings” of functions where APIs changed or descriptions were incomplete
or misleading,

3. improved the quick-start guide for getting started with the code,

4. updated the descriptions of the parameters expected or optionally includeable within the
configuration files macauff ingests.

However, we also added two new sections to the documentation to aid in understanding the
matching process in more depth.

First, we added a page describing the mathematics behind the software, detailing the Bayesian

12

https://onoddil.github.io/macauff/

D3.11.4: Report on the Preparation for Full-Scale DAC Matches

framework we have constructed and the specifics of each step in the matching process. This
page reflects the current approach to the complexities of cross-matching in crowded fields and
will be maintained going forward if future developments change our algorithms. It describes
past work[1, 2, 3], current developments[5, 7], and future works (such as the planned publication
of the perturbation AUF component extensions described in Section 4.1.2). An example part of
this page of the documentation can be seen in Figure 4.

Second, we included a “big picture” section, providing users with information on the stages that
surround the actual cross-match run itself, and the necessary steps that need to be taken to
provide catalogues in the correct format and combine datasets into a band-merged dataset once
the matching process is complete. Here we describe

1. the currently expected format of npy binary files for the catalogues, split into astrometry
and photometry in separate files, and how to use parse catalogue.py to create them,

2. the core-halo chunk model, and the additional expected binary file which holds the flags
for objects outside of a core region in each chunk patch,

3. AstrometricCorrections, the new functionality within macauff to determine centroid
precisions from large-scale counterpart separation distributions between a particular cat-
alogue and another with well-understood astrometry, for which more details are given in
this report in Section 4.2,

4. an overview of FitPSFPerturbations, the code for determining the background-dominated,
PSF photometry perturbation AUF component parameterisation, as described in Section
4.1.2,

5. the removal of potential duplicate sources as a result of the use of the core-halo model
(i.e., the removal of halo objects that are in one chunk’s halo and another’s core),

6. and the final stage of the workflow of creating cross-matches between two photometric
catalogues: the merging of their counterparts into a single dataset, and the reporting of
non-matches, and any associated information derived during the cross-match process.

4.1.4. Unknown Proper Motions

A method for deriving, in a statistical sense, the likely range of possible proper motions a source
may have, given its sky coordinates and brightness, was developed (R11.1-3, R11.5). Until
LSST DR4-5 this will be key to avoiding reliance on using Gaia as a go-between for robust
matches – especially since it will only overlap the brightest 10% of the LSST dataset or so.
Even once LSST is able to report proper motions, this functionality will be key for objects
below the single-visit detection limit, ensuring we do not miss matches due to this additional
term of object counterpart separation. Thus, to that end, we wished to be able to include the
potential proper motions for sources without measured ones.

The model we created[7] is relatively simple, but easy to compute and does not rely on any
specifics, just requiring sky position and star distance, available through Galaxy model simula-
tions. We extracted circular velocity distributions, and asymmetric drift velocity and velocity
dispersions (purely theoretical orbit and the slight reduction in “pure” circular speed due to
random interactions) from the literature. Combining models for the thin and thick disc and
Galactic halo – with potential eventual need for a model for velocities within the Bulge – and
converting from velocity to on-sky speed for all objects of a particular sky position and brightness
we can create distributions of potential proper motions for sources without measured motions.

13

D3.11.4: Report on the Preparation for Full-Scale DAC Matches

Figure 5: Potential proper motions of an object with particular coordinates and brightness but
no measured sky motion. Comparison data taken from Gaia, of an ensemble of many
sources’ proper motions in the chosen sky region and G ≈ 18, are given in the black
errorbars, with our model in the solid red line. Units have been converted from proper
motion in e.g. mas yr−1 to a separation drift across a decade, in arseconds.

These distributions fold in all manner of astrophysics – such as dwarf and giant stars at the
same brightness, unknown velocity due to orbital interactions, or the Sun’s motion around the
Galaxy. An example of the model compared with Gaia data is given in Figure 5, with Gaia
proper motions (converted to decade-long separation drift) in the black data compared with our
model in red, for a small slice in sky position and brightness around G = 18.

4.2. Astrometry Bias Derivation

The software that we have created within WP3.11 is capable of performing reliable cross-matches
– but only if the data provided to it are reliable. If the astrometric uncertainties provided in
the catalogues3 are not accurate, then the Bayesian matching algorithms we use will also not be
accurate, and matches and corresponding probabilities no longer trustworthy. To ensure that
this is not a factor in our matches, we created a parallel script within the macauff codebase to
determine ensemble astrometric precisions from the data themselves, comparing and verifying
the large-scale “correctness” of the catalogue positions and precisions through matches to high
spatial resolution and high astrometric precision data.

In the absence of crowding, we could achieve the calibration or determination of astrometric
uncertainties in the following way. If we had a large number of matches between our chosen
catalogue and some other catalogue with significantly higher astrometric precision we could use
the differences in position, or separation between sources in opposing catalogues, to determine
our AUF. Practically, we would expect this to be dependent on the magnitude of the sources, and
hence would likely fit sources in small magnitude ranges to derive the AUF for each magnitude

3Again, we refer to these as “centroid” uncertainties, which are the precisions with which the given position of
a source was determined on the detector.

14

D3.11.4: Report on the Preparation for Full-Scale DAC Matches

slice. Without being subject to the effects of crowding, these separations should be distributed
with Gaussian shape, and hence we would fit the distribution of separations for a common
Gaussian centroid uncertainty sigma, the ensemble astrometric uncertainty. Of course, in reality
catalogues with high relative densities of sources such as LSST or WISE are subject to crowding
and the effects of unresolved blended contaminants, so there is a second component of the AUF
that we must take into account. We must first estimate this component, as accuractely as
possible, and effectively combine it with the Gaussian centroid uncertainty distribution to model
the AUF that we actually see. In this section we describe how we derive astrometric uncertainties
as a function of “catalogue” astrometric uncertainty, as well as object magnitude. We show how
we combine our two crowding models (as described in section 4.1.2) and the process by which the
centroid uncertainties are fit for. Finally, we detail the relation between “input” and “output”
uncertainties that describe the corrections to the astrometric precisions that may be necessary
for accurate and reliable probabilistic cross-matches.

The code used to derive these corrective relationships in the astrometric uncertainties for a
particular catalogue, AstrometricCorrections, is run on small sky regions – perhaps tens of
square degrees. The code is agnostic to the size of any individual region – capable of being
passed functions that generate small cutouts of larger catalogues or loading pre-made data files.
However, scientifically we want the region to be as small as possible to avoid introducing biases in
catalogue reduction (either telescope based or e.g. differential Galactic longitude-based crowding
effects) but as large as possible to ensure good number statistics for brighter sources. For each
sightline passed to AstrometricCorrections, three major steps are performed.

(a) SNR-magnitude scaling relation for a particu-
lar sky region from AstrometricCorrections.
Using the magnitude and magnitude error of all
sources in a small sky region we derive a flux (S)
and SNR, shown in small log-flux bins (black er-
rorbars, hiding extra structure that we currently
ignore for this simple model). Our simple scal-
ing relation between S and S/SNR (or, equiva-
lently, one over the noise) is overlaid in the solid
red line. We also show the equivalent SNR as
a function of flux in blue errorbars, with the
same model fit transformed to pure SNR in the
dashed red line.

(b) Relation between quoted and derived astromet-
ric uncertainties. Once a particular sightline has
had data-driven centroid uncertainties derived
from the distribution of separations to higher
precision data, the relation is fit. Derived un-
certainties are shown in black error bars, plot-
ted against each data subset’s average catalogue
precision. This model (red dot-dash line) is a
simple quadrature sum of a systematic (n) and
quoted uncertainty scaled by a factor m. Green
dotted line shows the relation if quoted astrom-
etry described the distributions of separations
from “truth” for the objects in the catalogue
(m = 1, n = 0).

Figure 6: Figures showing aspects of AstrometricCorrections, along with Figure 3.

To calculate the hand-off between the two perturbation components of the AUF, valid in differing
SNR limits, we actually use the photometric measurements and uncertainties, since we find

15

D3.11.4: Report on the Preparation for Full-Scale DAC Matches

that the photometric uncertainties tend to be more reliable than the astrometric ones. We
first calculate SNR-magnitude relations which are used in the weighting between the photon-
noise dominated, flux-weighted AUF algorithm and the background-dominated PSF photometry
algorithm developed in D3.11.1 and described in Section 4.1.2. The weighting between the
two algorithm AUFs used within macauff is determined with a quadratic weighting between
the “plateau” SNR of the catalogue (where systematic effects such as PSF model uncertainty
outweigh photon noise uncertainty and flux-weighting is applicable) and zero SNR (where the
background-dominated algorithm is valid),

H = 1−
√

1−min(1, (a× SNR)2), (3)

with fits to a simple SNR model calculated from the data,

SNR =
S√

cS + b+ (aS)2
, (4)

and hence
S

SNR
=
√
cS + b+ (aS)2, (5)

where S is the flux of the source (and log10(S) effectively an instrumental magnitude), a sets the
“systematic” noise (linear with photon noise), c the relative level of photon noise in the images,
and b the source-independent “background” noise level; see Figure 6a. In this and subsequent
figures, we show WISE as the to-be-fit catalogue.

Next, in small magnitude slices in the to-be-fit catalogue, total AUFs are fit to the ensemble
distribution of separations between catalogue objects and “truth” positions and these are used
to fit for the centroid Gaussian uncertainty. The “truth” positions come from a catalogue with
much higher astrometric precision than our catalogue for which we wish to derive astrometric
corrections, to avoid confusing the contributions from both objects to position uncertainty in
the separation between catalogue-catalogue matches. However, due to the second effect from
crowding causing unresolved contaminants and bright-source positional shifts, we also require
the second catalogue be of much higher spatial resolution, to remove the effect of crowding on
the positions of these “truth” objects. Good choices for “ground truth” catalogue are therefore
datasets like Gaia or the Hubble Source Catalog, with the examples detailed here using Gaia. As
shown in Figure 3 above, this involves weighting each algorithm’s perturbation AUF component
by H, calculated from the SNR-magnitude relation, and fitting for the “centroid” precision.
This requires the H-weighted perturbation component of the AUF to be convolved with the
“centroid” component of the AUF, modelled as a Gaussian function with to-be-determined
width σfit. The fitting routine also determines the fraction of false matches F , if any, to avoid
false positives biasing the results. In Figure 3 the various combinations of our two perturbation
AUF component algorithms and quoted and best-fit astrometric precisions are shown in red and
black dotted or dash-dot lines, along with the H-weighted AUFs, with original (black solid lines)
and “best-fit” (red solid line) uncertainty, with only the best-fit, H-weighted AUF giving good
agreement to the data.

Finally, relations between derived and quoted uncertainties are fit (see Figure 6b). Here we use
a relatively simple but physically motivated model. Best-fit uncertainties are fit as a sum-in-
quadrature of a missing systematic uncertainty n – setting a minimum astrometric uncertainty –
and scaled quoted uncertainties, padded by a factor m (for cases where e.g. missing systematics
are corrected for in noisier data),

σfit =

√
(m× σquoted)2 + n2. (6)

The code can be run separately from CrossMatch within macauff, or it can be called on a
per-chunk basis within the MPI-based parallel framework for larger LSST-scale matches. If run

16

D3.11.4: Report on the Preparation for Full-Scale DAC Matches

separately, CrossMatch can use the grid of derived scaling relations to assign nearest-neighbour
values for m and n to any matches performed using that catalogue. Alternatively, if run within
a chunk-based parallel run, each chunk can effectively have its own scaling relations determined
from the data in situ.

This new software is key for ensuring that ancillary datasets, such as CatWISE, have reliable
astrometric precisions that don’t bias our probabilistic matching process (R11.1, R11.3, R11.5),
but it will also be key to our future Phase C work with LSST (see below).

5. DAC-DEV Workflow and All-Sky Matches

The final, and most crucial, element of work undertaken within the remit of D3.11.4 is that of
the actual running of the software. Previous testing, such as the “scaling relation” work[4] or
the tests performed in D3.11.3, were relatively limited in scope; either they were small parts of
the sky (in the case of D3.11.3) or reduced in scope to test specific parts of the code (in the
case of the scaling relations). We therefore required, before “signing off” on the software, proof
of its running on large scales, such as those we will see in production. This then tests our role
in what we refer to as the “DAC-DEV Interface”[8], the “Cross-Match Processing” – the actual
running of the algorithm and the determination of counterparts – and Interfaces 2 (Scheduling
cross-matches), 4 (Software configuration), and 5 (Deployment of software). These aspects sit
between the DAC’s roles in the generating the reduced format “skinny tables” from catalogues
like full LSST Data Releases and associated ancillary datasets, in this case Gaia and WISE,
for use by macauff (Interface 3) and ingestion of final outputs (see Figure 7 for an example)
back into the DAC (Interface 6). Combined with the eventual public-facing access of the data
from the RSP (Interfaces 7 and 8), this test is designed to exercise all parts of the DAC-DEV
workflow.

We have begun ramping up our interactions with the DAC team and performed an all-sky Gaia-
CatWISE match (R11.6-7). As an all-sky test, we required the use of the partioning software
to pre-generate sufficiently small patches of sky to run on a single node within a reasonable
time; setting 25 square degree chunks resulted in 1558 separate cross-matches to perform and
recombine. Individual runtimes for each chunk vary considerably due to the number of objects
in each chunk, with Gaia varying from at smallest 64,000 sources up to 30,000,000 in the largest
and WISE varying less (likely due to its inability to detect significant numbers of stars in
crowded Galactic regions but also being more sensitive to extragalactic objects), from 680,000
to 4,000,000 sources. Due to a rate-limiting factor of an external API call to simulated data
necessary for our cross-matching algorithms a total runtime is not verifiable at this stage, but
individual chunks – working from largest to smallest to load balance nodes – ranged from longer,
higher source density runs of an hour down to a more typical 20 minute runtime once this API
call was removed.

This test proved that the final code will run outside of those more limited cases we tested on
previously. At the same time, the runs did reveal the science complexity of our cross-match
algorithms, in which it is necessary to build a reasonable proxy of the brightness distribution
of sources for any arbitrary sky coordinates in any filter. The tests showed us a weakness
with our astronomical model used within the code in extreme cases such as within the very
Galactic centre, where sources are systematically bright (due to reduced completeness limits
from reddening or crowding) but our Galactic models push systematically faint. In such cases
the Galactic extinction (the level to which objects are dimmed by intervening dust along the
line of sight) was poorly chosen, incorrectly making all of our simulated objects much fainter
than the real data. A more comprehensive model of differential line-of-sight dimming within
each small region of sky brought our simulated source counts into agreement with observations

17

D3.11.4: Report on the Preparation for Full-Scale DAC Matches

once more, and avoided the issue of too-low number counts in these key regions of the sky.

Overall, however, the test was a success – if nothing else, the failure in the Galactic centre
showed that the code written to gracefully handle individual chunk failures without impacting
the runtime of any other chunk worked flawlessly! As we ramp up further in our testing with the
DAC team, and begin scientific verification of the match results (R11.6-7), we will continue to
investigate this potential issue, as it will impact LSST and the large fraction of Galactic plane
science astronomers are planning with the Bulge.

(a) An example of a match table between Gaia and WISE. The tables are headerless, with metadata
handled separately, but the column names are G ID, G RA, G DEC, BP, G, RP, W ID, W RA, W DEC, W1,
W2, MATCH P, SEPARATION, ETA, XI, G AVG CONT, W AVG CONT, G CONT F1, G CONT F10, W CONT F1,
W CONT F10, G ASTRO SIG USED, and W ASTRO SIG USED, which are explained in the text.

(b) An example of a non-match table between Gaia and WISE, in this case the WISE non-
matches. The tables are headerless, with metadata handled separately, but the column names
are W ID, W RA, W DEC, W1, W2, MATCH P, NNM SEPARATION, NNM ETA, NNM XI, W AVG CONT, and
W ASTRO SIG USED, which are explained in the text.

Figure 7: A few lines of outputs from match and non-match tables as produced by macauff.

An example of a successful output of these tables, ready for ingestion into the UK DAC and
processing for serving through the RSP once combined with all of the other partitioned sky
chunks, is given in Figure 7. Part of the DAC-DEV workflow was a preference for headerless
data files, so in each case the headers are given in the caption. For both files, the prefix G or
W refers to the catalogue (Gaia or WISE respectively), and the parts after that are detailed
below.

1. ID: the designation of the source in the original catalogue.

2. RA: Right Ascension of source

3. DEC: Declination of source

4. BP, G, RP, W1, W2: magnitudes of source in catalogue

5. MATCH P: Probability of detections being the same object, given by equation 26 of [2]
(R11.6.1)

6. SEPARATION: On-sky separation of sources in arcseconds

7. ETA: The logarithmic ratio of match vs non-match only considering photometry; equation
37 of [2]; note for NNM ETA this is the ratio for this source and the nearest non-matching
object in the other catalogue (R11.6.3)

18

D3.11.4: Report on the Preparation for Full-Scale DAC Matches

8. XI: The logarithmic ratio of match vs non-match only considering astrometry; equation 38
of [2]; note for NNM XI this is the ratio for this source and the nearest non-matching object
in the other catalogue (R11.6.2)

9. AVG CONT: The average contamination within each source, as determined using the simu-
lated perturbation component of the Astrometric Uncertainty Function within perturbation auf.py

10. CONT F1: Probability object contains a contaminating source above 1% relative flux

11. CONT F10: Probability object contains a contaminating source above 10% relative flux

12. ASTRO SIG USED: The astrometric uncertainty as used within macauff, saved for cases
where we may have updated the astrometric uncertainty using AstrometricCorrections

(R11.5)

Note, however, that these are just the examples as provided within this test case; the software is
capable of including extra columns from the original catalogues if desired, and other secondary
match information can easily be added within macauff if requested by the community.

6. Future Work and Phase C

While the overall goal of D3.11.4 – the “proof-of-concept” of a large-scale cross-match – has
been achieved, there are still various improvements that can be done as we close out Phase
B and move into Phase C. First, the code will continue to be worked on, ironing out bugs,
improving workflows, adding to documentation. Second, we will continue to interact with the
wider LSST community and particularly the TVS and SMWLV Science Collaborations to ensure
both that our In-Kind Contribution is satisfied but also to ensure that our efforts have the
widest possible reach and impact. While the In-Kind Contribution we have created is software
to perform cross-matches, this was largely a limitation of timelines, both of LSST:UK Phase B
and Rubin construction; our ultimate deliverable is the LSST-catalogue cross-matches, so we
will need to continue a dialogue to ensure that we maximise the potential value-added science
achievable from our combined cross-match tables. This dialogue also satisfies the first DAC-DEV
Workflow Interface[8], in which prioritisation of ancillary datasets is needed for cases where
compute time is lower than required to perform all possible catalogue match combinations.
Third, we have a couple of code extensions that could be implemented; the “unknown proper
motion” code previously developed could be folded into the matching algorithms, or we could
also extend to “real-time” cross-matching and investigate working with brokers such as Lasair to
improve the ancillary catalogue collection required to identify transient objects (R11.3, R11.5,
R11.8). Depending on community interest, this could conceivably include efforts to increase the
useability of the code by community members for their own ends. At the moment, the code is
written with a specific framework in mind, and it is envisaged that dedicated (UK) DAC team
members will run the code on static LSST Data Releases to deliver its goals as promised, but
given enough demand it could be possible to extend functionality to allow “on demand” user
catalogue uploads or improvements to the codebase that lower potential barriers to running
the code on local hardware. Fourth, the code created to determine the systematic biases of
ancillary surveys within D3.11.4, AstrometricCorrections, will be used within Phase C as
part of our efforts within the SIT-Com team to determine the reliability of LSST astrometry,
where our models for the additional systematic astrometric uncertainties and positional offsets
will be crucial in disentangling misrepresented centroid uncertainties from these other effects.
Finally, as previously stated, we will continue to work with the DAC team to perform matches,
with a particular eye on those catalogues that will be of use to astronomers currently, both to
ensure the runs are scientifically useful but also to “recruit” beta testers (which satisfies the

19

D3.11.4: Report on the Preparation for Full-Scale DAC Matches

previously-deleted R11.4).

We also plan to submit a paper detailing the mathematical algorithmic extensions to the per-
turbation component of the AUF (see D3.11.1), publish the software through the Journal of
Open Source Software, and publish a small Research Note of the AAS reporting our initial
Gaia-CatWISE match which supersedes a previous version (R11.2, R11.7).

20

D3.11.4: Report on the Preparation for Full-Scale DAC Matches

References

[1] Wilson & Naylor, 2017, MNRAS, 469, 2517

[2] Wilson & Naylor, 2018, MNRAS, 473, 5570

[3] Wilson & Naylor, 2018, MNRAS, 481, 2148

[4] Scaling Relations for WP3.11 Cross-Match Software macauff, accessed March 2023

[5] Wilson, 2022, RNAAS, 6, 60

[6] Plewa & Sari, 2018, MNRAS, 476, 4372

[7] Bosch et al., 2018, PASJ, 70, 5

[7] Wilson, 2023, RASTI, 2, 1

[8] WP3.11 DAC-DEV Interface Document, accessed March 2023

21

https://lsst-uk.atlassian.net/wiki/download/attachments/766574618/scaling_relations_wp3.11.pdf?version=1&modificationDate=1639670748243&cacheVersion=1&api=v2
https://lsst-uk.atlassian.net/wiki/download/attachments/763133957/WP3-11_DAC-DEV_interface_definition.pdf?api=v2

D3.11.4: Report on the Preparation for Full-Scale DAC Matches

Annex A Software Architecture

The main physical deliverable for this work, as with D3.11.3, is the software, available online. As
per the Project Management Plan, software development should be maintained in a version con-
trol repository. The main codebase is therefore located at https://github.com/Onoddil/macauff.
It features a full test suite for validation, as well as functionality to generate test data to input
into the cross-match algorithm for end-to-end verification. The folder structure is as follows.

• Top-level files.

– CHANGES.rst: changelog file, itemising the updates to the codebase.

– LICENSE and README.md: details of licensing of codebase, and a top-level overview
description of the software.

– MANIFEST.in, pyproject.toml, and setup.cfg: minor files that aid with the setup
and installation of the Python package.

– python-package.yaml: within the .github/workflow folder, this details the GitHub

virtual environment setup and the running of the test suite.

– setup.py: main installation file for the Python package, which describes the various
dependencies for installing the package, and controls the compiling of fortran code.

– tox.ini: configuration file describing setup of the tox environment for test purposes.

– codecov.yml: configuration file for the code coverage banner available in the README.

• Documentation files, docs/.

– conf.py: configuration file, for Python automated creation of documentation.

– *.rst: files containing the raw text that makes up the documentation of the codebase.

• Code files, macauff/.

– init .py: File used during the installation process, indicating which files and func-
tions should be importable.

– counterpart pairing*: Python and Fortran code (.py and fortran.f90 respectively)
to run the cross-match assignment functionality and calculate cross-match probabil-
ities.

– derive psf auf params.py: Python code to generate the parameterisations of the ef-
fects of fitting two objects with a single PSF model in the limit that background noise
dominates.

– fit astrometry.py: Python code to derive the systematic bias relations in quoted as-
trometric uncertainties for small regions of sky.

– galactic proper motions.py: Model for unknown proper motions based on particular
sky coordinates and source brightness.

– galaxy counts.py: Python code to derive differential galaxy count densities based on
Galactic extinction and bandpass of observation.

22

https://github.com/Onoddil/macauff/tree/419db2f596a4ec99d56e784fb75de9da8c3e6ad8

D3.11.4: Report on the Preparation for Full-Scale DAC Matches

– get trilegal wrapper.py: Wrapper for calls to the TRILEGAL simulations for gener-
ating Galactic source counts for a particular sightline and bandpass.

– group sources*: Python and Fortran code used in the generation of “islands” of
potential counterparts, independent of other sources in the respective catalogues.

– make set list.py: Python script used in group sources.py to derive “sets” of source
overlaps on astrometric considerations, based on lists of sources near to each object.

– matching.py: Python code handling the overall cross-match process.

– misc functions*: Python and Fortran code that is used in multiple places throughout
the cross-match process, and hence cannot be kept within any single script.

– parse catalogues.py: Python script hosting convenience functions to convert input
catalogues to binary .npy files, convert final outputs from the matching process into
.csv files, and perform various tasks such as correct for systematic astrometry biases.

– perturbation auf*: Python and Fortran code to handle the creation of the perturba-
tion component of the Astrometric Uncertainty Function.

– photometric likelihood*: Python and Fortran code to handle the creation of source
match likelihoods on photometric grounds.

– shared library.f90: Similar to misc functions, contains subroutines that are needed
across other Fortran modules, and are therefore accessible from those other files.

– Test files, tests/.

∗ init .py: same as in the parent folder.

∗ test *.py: Unit test scripts, one per Python script in the folder above, to ensure
consistency and accuracy of the main codebase.

∗ test full match process.py: An additional test script, which also includes func-
tionality to generate a “dummy” dataset for testing the end-to-end capability of
the codebase.

∗ Data files, data/.

· *.txt: example files of the configuration files used in the cross-match process.

· *.npy: example versions of data generated via derive psf auf params.py,
usable within matching and used in testing.

In addition, to aid in the review, preliminary documentation – guides to installation and getting
started with the codebase – is available at https://onoddil.github.io/macauff/. This documen-
tation, formed from the raw files in macauff/docs in the repository, is structured as follows.

• Homepage: brief description of module and links to various starting pages.

• Installation: details the installation process of the module, its dependencies, and how to
run the test suite to ensure successful installation.

• Quick Start: description of how to begin working with the package, describing the neces-
sary files to run a cross-match, and giving examples of how to run matches between two
catalogues.

23

https://onoddil.github.io/macauff/

D3.11.4: Report on the Preparation for Full-Scale DAC Matches

• Inputs: more in-depth descriptions of each parameter that should be specified in the input
configuration files used in the cross-match process.

• Documentation: collection of available functions within both the Python and Fortran code
in the codebase, describing the inputs and outputs from each function or subroutine in
detail.

• Algorithms: details of the mathematics behind the cross-matching code

• Pre- and Post-Process: information regarding the steps that happen before and after
the “main” aspect of cross-matching, such as the creation of the input files, the core-halo
“chunk” model, the removal of duplicated objects in both core and halo of differing chunks,
and the creation of output merged cross-match data files.

24

	Version History
	Executive Summary
	Introduction
	Glossary of Acronyms

	Run Timescales and MPI Parallelisation
	macauff
	Code Extensions
	Galaxy Counts Model
	Background-Dominated PSF Photometry Perturbations
	Documentation
	Unknown Proper Motions

	Astrometry Bias Derivation

	DAC-DEV Workflow and All-Sky Matches
	Future Work and Phase C
	Annex Software Architecture

