
Copyright LSST:UK Consortium 2022

D3.2.2 Lasair User Interface

WP3.2 LASAIR–the UK transient broker for
LSST

Submission date 30/AUG/22

Version 1.0.

Status Final

Author(s) inc.
institutional affiliation

Roy Williams and Gareth Francis, University of Edinburgh
Ken Smith and Dave Young, Queens University Belfast

Reviewer(s) S. Caswell (Leicester,

C. Inserra(Cardiff)

Dissemination level
Public

Version History
Version Date Comments, Changes, Status Authors, contributors,

reviewers

0.1 16/FEB/22 First draft from Williams R. Williams

0.2 30/AUG/22 Contains updates from Young, Francis and
Smith

D. Young

0.3 06/SEP/22 Accepted track changes, updated
document properties

T Sloan

0.4 15/Oct/22 Modified from reviews R Williams, D Young

1.0 18/NOV/22 Final following Exec Group approval T. M .Sloan

Project Acronym LUSC-B

Project Title UK Involvement in the Legacy Survey of Space and Time

Document Number LUSC-B-32

D3.2.2 LASAIR USER INTERFACE

2

Table of Contents

VERSION HISTORY .. 1

1 EXECUTIVE SUMMARY ... 3

2 WHAT IS LASAIR? ... 3

2.1 FUTURE CHANGES .. 4

3 SQL QUERIES ... 4

4 WATCHLISTS AND WATCHMAPS .. 5

5 SHERLOCK .. 5

6 USER INTERFACE .. 6

6.1 WEB ... 7
6.2 ANNOTATOR ... 7
6.3 SQL DATABASE .. 8

7 ACRONYMS ... 9

8 GLOSSARY OF TERMS .. 10

9 REFERENCES .. 10

D3.2.2 LASAIR USER INTERFACE

3

1 Executive Summary
This report describes the user interface of the Lasair Community Broker: the purpose,
the architecture and design, the underlying technologies, and how the components work
together.

2 What is Lasair?
The Lasair Community Broker[1] is a platform for astronomers to work effectively with
the LSST transient alert stream: it is designed to be fast, flexible, and capable. Given
that LSST data is not yet available, Lasair has worked with data from the Zwicky
Transient Facility (ZTF)[2] for the last four years. ZTF is similar in crucial ways to what
the LSST stream[3] will be: data is delivered as fast as possible from the telescope, using
the Kafka technology. We have benefitted enormously from prototyping with ZTF, and

Figure 1. The Lasair Object page provides the three cutout images of the object, lightcurves
in all filters, AladinLite panchromatic views, the Sherlock context, and relevant information
from the Transient Name Service (TNS).

D3.2.2 LASAIR USER INTERFACE

4

we are sure that the infrastructure we have built puts us in a good position for handling
the LSST stream.

The central purposes of Lasair are to (1) collect the transient alerts and amplify their
scientific usefulness by adding value, and (2) to allow scientists to find objects that are
relevant to their own science goals. Figure 1 shows the Lasair object display page; each
alert contains a fresh point of the light curve (“candidate” in ZTF, and “diaSource” in
LSST), and the Lasair database shows (astrophysical) objects as collections of
detections, together with the latest cutout images. Lasair adds contextual information
from the “Sherlock” transient classification algorithm (see below), and matches with the
TNS – the IAU record of detected supernovae [4].

While other LSST community brokers are based on existing classification algorithms,
Lasair is not. Rather Lasair is a platform to annotate alerts in many ways, filter the alerts,
and deliver the results to astronomers. Instead of a classifier, we have made the
'annotator' system, so that a user can run their own classifier on Lasair lightcurves and
push the result back into the system. We have one such classifier now in operation,
called FastFinder.

2.1 Future Changes

Much of the Lasair infrastructure and user interface is built, based on the prototype alert
stream from ZTF. However, our real purpose is to be a broker for LSST alerts, which are
different in several ways. The most obvious difference is in data bulk – perhaps 30 time
more – but we expect the Lasair user interface to be different in a few ways:

 LSST brightness will be written as flux (nanoJansky) instead of magnitudes.
 Six light filters instead of two, thus changing the lightcurve features.
 In the first year at least, the unprecedented depth of LSST means no

comprehensive galaxy catalogues will be available.
 LSST alerts will include an object packet (diaObject) with LSST-provided

lightcurve features.
 LSST alerts will include forced photometry packets (diaForcedSources).
 Some LSST alerts will include a solar system packet (ssObject).
 Some data will be proprietary, available only to data-rights holders.
 Some alert data will not come along with the alert, but only in subsequent days.
 A new scheme so that users can request forced photometry.

All these qualitative changes will mean changes to the Lasair user interface.

3 SQL queries
For finding “interesting” objects, Lasair offers a SQL-based query system, that includes
several auxiliary tables that can be joined. Users can select on several additional
resources in addition to the features of the astrophysical object; including sky position,
proposed host galaxy, TNS metadata.

Lasair also has an “annotation” capability, so that external entities can contribute data,
that can in turn be used for selections. When users build filters, watchlists, areas, and
annotations, they can be private; or a user can allow anyone else to share by seeing and
utilising that resource.

Figure 2 sketches the filter builder. The FROM section is a menu of tables from which
the filter will be built, including the Sherlock information, watchlists and areas, the TNS
database, and the available annotator components. The SELECT clause is an SQL
phrase expressing what will be returned, and WHERE phrase is a set of cuts to get only

D3.2.2 LASAIR USER INTERFACE

5

what is interesting. There is a guide showing all available attributes, and a set of actions
such as running the filter, saving it, or copying a filter from another user – for modification.

A filter query can be typed into the web form and simply executed. After checking the
syntax, a time limit and row limit is added, and the filter can be executed. If a user is
logged in to Lasair, they can save the filter for future use; and they can also check a box
for it to be run in real-time on the incoming alerts. Active filters pass only the alerts that
interest that user; the output of a filter is a stream, which can be delivered to the user
through a public Kafka system, or by email.

4 Watchlists and Watchmaps
Lasair also offers discrimination based on the location of an alert in the sky. A watchlist
is set of named sources of interest to a user, a “personal catalogue”. Each source comes
with a tolerance radius for the crossmatch, and is thus called a cone. When an alert falls
in one of the cones, a tag record is made connecting the alert and the name of the cone.
In this way, a user can declare interest in variability from their personal catalogue of
sources, for example the million-quasar catalogue, or the 55 very close binaries of AM
CVn type. Watchlists can contain millions of sources.

Users can also select alerts from a specific area of the sky, that we call a “Watchmap”,
for example a gravitational wave footprint, or the SDSS Stripe 82. Alerts that fall in the
area are tagged, and a query/filter that selects on the watchmap tags will get just those.
Both the watchlist and the watchmap capability are implemented with the MOC system
[5]. For the area, the user uploads the MOC file itself, and for the watchlist, these files
are built from the list of cones – see “Background Services” below.

5 Sherlock
Elucidating the nature of extra-galactic transients depends critically on identifying the
host galaxy. Lasair achieves this by integration with a crossmatch system that has all the
latest and deepest catalogues.

Figure 2. The Lasair query builder web page. The user creates a query by selecting source
tables (objects, sherlock, watchlists, areas, TNS and annotations) then builds SQL-like
SELECT and WHERE clauses. Queries can be saved, copied, and modified. A query can
run real time as a filter, which produces an output stream.

D3.2.2 LASAIR USER INTERFACE

6

Sherlock [6] is a software package and integrated massive database system that
provides a rapid and reliable spatial cross-match service for any astrophysical variable
or transient. It associates the position of a transient with locally curated major
astronomical catalogues (NED, PanStarrs, Gaia, 2MASS, SDSS, etc) and assigns a
basic classification to the transient based on a boosted decision tree algorithm. At its
most basic, it separates stars, AGN and supernova-like transients. The algorithm is
queried via an API, which facilitates delegation of result storage to the calling code to do
with it whatever is required (e.g. store the basic summary result but not the associated
ranked catalogue entries, or store everything). Each Sherlock node is a multi-terabyte
read-only replica, so addition of more context classification capacity to Lasair is just a
matter of increasing the number of Sherlock nodes.

6 User Interface
Lasair allows users to execute a wide class of SQL queries on the database of active
objects, and to convert those to filters on the real-time stream, with the outputs pushed
– in near real time – to other machines or to email. Lasair also provides an API for data
access, so that users can build code and notebooks to work with Lasair objects and
lightcurves. Lasair allows users to “annotate” the database of transients with their own
classifications. Lasair allows users to log in to the website, where they can store and
share filters, watchlists, areas, and annotations.

Figure 3. List of watchlists (public and user owned). A catalogue based watchlist is generated
from a set of points in the sky, together with an association radius. Each transient falling within
an association radius of a watchlist source is flagged as matched against that watchlist. If a
watchlist is “active”, it is crossmatched with incoming alerts in real time; if it is “public” then
Lasair other users can see it in the public gallery.

D3.2.2 LASAIR USER INTERFACE

7

6.1 Web

The Lasair webserver and API server allow users to control their interactions with the
alert database and the stream. Information about an astrophysical object can be
displayed on a web page; users can create, run save, and share filters; users can create
and share watchlists and areas; and users can create annotators to classify light curves
or other information and push the classifications to the Lasair database, where they are
available for querying.

The web server is built with the Django software [7]: requests are passed to python code,
data added from the databases, and the results sent to templates that make web pages.
The web server is built in two layers: a low-security “http” system that is easy to manage,
but accessible only to the internal network; then an outward-facing secure proxy uses
“https” and certificates and forwards requests to the internal system.

There is also a Lasair API, where machines make requests and receive responses; the
API has a token-based throttling system, so that any individual user cannot overwhelm
the system with requests.

As with any Django web server, there is also has an “admin” page accessible to
administrators, allowing changes to user’s accounts, seeing all the stored resources
(private or public), and administering annotators to prevent abuse.

The Lasair API has the following methods:

 cone: runs a cone search on all the objects in the Lasair database.
 query: runs a SQL SELECT query on the Lasair database.
 streams: returns a record of the output from a Lasair streaming query.
 objects: returns a machine-readable version of the object web page.
 lightcurves: returns simple lightcurves for a number of objects.
 sherlock/objects: returns Sherlock information about a list of named objects.
 sherlock/position: returns Sherlock information about a sky position.

6.2 Annotator

The Lasair API supports annotation: a structured external packet of extra information
about a given object, that is stored in the annotations table in the SQL database. We
have worked in collaboration with the teams of other LSST community brokers -- Fink
and Alerce -- to ingest their classifications that are distributed via Kafka (see
“Background Services” below). Thus a Lasair user can, for example, create a stream of
alerts where (a) Sherlock sees an associated galaxy and (b) Fink sees a probability >
0.5 that the alert is an early supernova. The “Annotations” checkbox can be seen in the
filter builder as shown in Figure 2.

Annotations can also be generated from a Lasair stream. The FastFinder annotator uses
a “pre-query” within Lasair to generate a stream, and for each one the lightcurve is read
in via the API, and classified, with the results being pushed back to Lasair as above.

Since annotation puts data into the Lasair database, we must be careful of who is allowed
to do this. We distinguish between annotator and annotation: the former identifies who
is responsible and the description, while the latter references from which annotator it is
derived. Whenever an annotation is received by the Lasair API, it should contain the
unique API token of the owner of that annotator, and if there is a mismatch, it will be
rejected. Annotators are managed through the admin page described above.

D3.2.2 LASAIR USER INTERFACE

8

6.3 SQL database

The SQL database drives the webserver and API through Django, and also executes
user queries on the object table, joined with other tables. There are some precautions
and modifications applied to the SELECT and WHERE clauses that the user provides:

 User-written queries (filters) run on a read-only account on the database
 An execution time limit is added
 A limit on output rows is added
 Some words are prohibited: some examples are create, select, from, where,

join, inner, outer, with, union, exists.
 There is a careful parsing of parentheses and brackets.

The important tables of the SQL database are shown in Figure 4. Tables connected by
blue lines are user-owned resources – annotators, filters, watchlists, areas. Tables
connected by red lines are about astrophysical objects and can be used in a user-built
filters. The very large ‘candidates’ table is not in the SQL database, but rather in the
NoSQL database – Cassandra is used as a lightcurve store.

The attributes of the object table include a number of “features” of the lightcurve, that
users can use to select interesting objects. These are not computed on the whole
lightcurve (~4 years), but only on the most recent 30 days, the candidates included with
each alert: this is so that alerts can be handled in parallel, without need for multiple filter
nodes to be continually hitting the databases.

The feature list as of July 2022 is shown in Figure 5. Spacetime is in the left panel: the
distribution of the measured positions for each candidate, galactic coordinates, and the
times of the start and end of the lightcurve. Other features include the distribution of

Figure 4. The Lasair entity relationship diagram. Candidates are stored in a separate NoSQL
system from the other tables that are in an SQL system. Queries are built with the “objects”
table joined with others. The candidates table is not directly accessible with SQL queries.
Sherlock, TNS, and annotation tables provide extra information. Users can create stored
queries, watchlists, areas, and annotators keyed to their user account.

D3.2.2 LASAIR USER INTERFACE

9

magnitudes, moving averages of the magnitudes, numbers of candidates, and
information about nearest PanStarrs objects.

Much of the Lasair user interface is fairly solid – the ideas of building filters with lightcurve
features, the watchlists and watchmaos, etc – one part that is still under development is
the nature of these features. The ultimate objective of Lasair is to be a community broker
for LSST, and the ZTF implementation described in this report is simply a prototype. At
this time (2022) we are looking to the lightcurve features relevant for LSST. In contrast
to ZTF, LSST will provide a large set of features [8] to describe periodic and stochastic
variability. However, there is not much on recent, rapid transients.

Our current thinking is to characterise so-called "tiny lightcurves", which have only a few
points from a few nights, presumably from an explosive transient like SN, KN, TDE, or
GRB. For a single-filter LC, we have tried a number of fitting methods: linear, quadratic,
t*exp(-t), Bazin, etc, as well as gaussian process. Each has their advantages. But we are
also experimenting with features that consider all the filters together, given that the 6
filters of LSST is a lot more than the 2 filters of ZTF. We are trying to estimate three
things: (1) how fast is the source brightening, (2) color evolution, and (3) absolute
magnitude.

7 Acronyms

API: Application Programming Interface

IAU: International Astronomical Union

LSST: Legacy Survey of Space and Time

MOC: Multi-Order Coverage

SQL: Structured Query Language

TNS: Transient Name Service

ZTF: Zwicky Transient Facility

Figure 5. Lasair lightcurve features as of July 2022.

D3.2.2 LASAIR USER INTERFACE

10

8 Glossary of Terms
Term Definition

Alert Broker A platform and software system designed to read transient
alerts from the Rubin Observatory. A broker will redistribute
these alerts to other platforms, brokers and to the broader
scientific community. Before redistribution, a broker may inject
value-added content into the alert packets.

Annotate To add value-added content to an transient alert packet.

Crossmatch (or conesearch) The sky coordinates of an astrophysical object or objects are
matched (or cross-matched) against another list of sky
coordinates (e.g. a galaxy catalogue). Sources matched within
a given separation tolerance (search radius) are returned as
an associated pair.

Filter Based on a SQL query, a user can write a filter to strictly define
the properties of transients they are particularly interested in.
Transients matching these criteria will be found by the filter.
Filters can be saved and rerun.

Kafka A distributed streaming platform used to build real-time
streaming data pipelines. Rubin's main alert stream pipeline
and Lasair both rely on Kafka to send (and receive in the case
of Lasair) alert packets.

Lasair Pronounced '*L-AH-s-uh-r*'. Means flame or flash in Scots and
Irish Gaelic.

Sherlock A large database of historical astronomical catalogues
combined with an association algorithm used to predict the
nature of a transient event based on its local context.

Stream Real-time distribution of transient matches (whether via filters,
watchlists or watchmaps) typically via the Kafka streaming
platform.

Watchlist A set/catalogue of sky positions and associated radii.
Transients found within an association radius of a watchlist
sky-position are 'matched' against the watchlist source. Users
can save watchlists and be alerted to new matches as new
transients are detected.

Watchmap A user-defined region of the sky. Transients discovered within
the region are 'matched' against the watchmap. Users can
save watchmaps and be alerted to new matches as new
transients are detected.

9 References
[1] Lasair Community Broker: https://lasair-ztf.lsst.ac.uk

D3.2.2 LASAIR USER INTERFACE

11

[2] Zwicky Transient Facility: https://ztf.caltech.edu/

[3] LSST alert stream: https://www.lsst.org/scientists/alert-brokers

[4] Transient Naming System: https://www.wis-tns.org/

[5] Multi-Order Coverage Maps:
https://www.ivoa.net/documents/MOC/ and https://pypi.org/project/mocpy/

[6] Sherlock system: https://arxiv.org/abs/2003.09052

[7] Django web framework: https://www.djangoproject.com/

[8] E. Bellm, Review of Timeseries Features: https://dmtn-118.lsst.io/

