
Copyright LSST:UK Consortium 2017

Design of Lasair Infrastructure

LSST:UK Phase B WP2.3 Alert Handling
Infrastructure

Submission date 22/AUG/22

Version 1.0

Status Final

Author(s) inc.
institutional affiliation

Roy Williams and Gareth Francis, University of Edinburgh
Ken Smith and Dave Young, Queens University Belfast

Reviewer(s) Cosimo Inserra (Cardiff),

George Beckett (UEDIN)

Dissemination level
Public

Version History
Version Date Comments, Changes, Status Authors, contributors,

reviewers

0.1 10 July 2022 First draft from Williams

0.2 16 July 2022 Additions from Francis, Smith

0.3 9 Aug 2022 Minor corrections and clarifications G. Francis

0.4 31 Oct 2022 Added science requirements section R. Williams

1.0 18/NOV/22 Formatting updates following Exec Group
approval, Final

T. M. Sloan

Project Acronym LUSC-B

Project Title UK Involvement in the Legacy Survey of Space and Time

Document Number LUSC-B-31

DESIGN OF LASAIR INFRASTRUCTURE

2

Table of Contents

VERSION HISTORY .. 1

1 EXECUTIVE SUMMARY ... 3

2 ARCHITECTURE .. 3

2.1 WHAT IS LASAIR?... 3
2.2 PIPELINE OF CLUSTERS .. 3
2.3 ROLES FOR NODES .. 4

2.3.1 Kafka ... 4
2.3.2 Ingest .. 4
2.3.3 Sherlock .. 5
2.3.4 Filter .. 5
2.3.5 Mining ... 5
2.3.6 Web .. 5
2.3.7 Annotator ... 6
2.3.8 Openstack ... 6
2.3.9 Lasair-Deploy .. 6

3 INFRASTRUCTURE COMPONENTS .. 6

3.1 DATA TRANSPORT .. 6
3.2 DATA STORAGE .. 7

3.2.1 SQL database .. 7
3.2.2 NoSQL database ... 8
3.2.3 CephFS .. 8

3.3 OTHER INFRASTRUCTURE ... 8
3.3.1 Monitoring .. 8
3.3.2 Background services ... 8
3.3.3 Massive computing ... 9

4 RISK AND SUSTAINABILITY .. 9

5 SCIENCE REQUIREMENTS ... 9

5.1 LASAIR SHALL PROVIDE .. 9
5.2 LASAIR SHOULD PROVIDE .. 10

6 REFERENCES .. 11

DESIGN OF LASAIR INFRASTRUCTURE

3

1 Executive Summary
This report describes the technical infrastructure of the Lasair Community Broker: the
purpose, the architecture and design, the underlying technologies, and how the
components work together.

2 Architecture
2.1 What is Lasair?

The Lasair Community Broker[1] is a platform for astronomers to work effectively with
the LSST transient alert stream: it is designed to be fast, flexible, and capable. While
intended for the LSST alert flow, that is still in the future. Therefore Lasair development
work so far has used a prototype system, ZTF, that has been running since 2018, and
which has been built to be a prototype of LSST.

Lasair gets alert data from the USA most nights – whenever it is clear at the site of the
telescope. The public ZTF stream that we now ingest is between 100,000 and 600,000
alerts per night, each about 60 Kbytes. The alerts are sent by Kafka technology (see
below), and LSST will also use Kafka. Having set up the infrastructure to receive Kafka,
we have decided to use Kafka for communication within our system as well as for the
data input.

A Kafka system [7] allows a set of compute nodes1 to read data packets so that each
packet is read by at least one node, with the Kafka system itself keeping the
“bookmark2” of what has been read up to now.

While other LSST community brokers are based on existing classification algorithms,
Lasair is not. Therefore we instead made the 'annotator' system, so that a user can run
a classifier on Lasair lightcurves and push the result back into the system. We have one
such classifier now in operation, called FastFinder.

2.2 Pipeline of Clusters

Lasair ingests data with a pipeline of clusters: each cluster does a different job, some
more compute/data intensive than others, so it is difficult to know a priori how much
resource should be allocated to each. Our design gives flexibility: each cluster can be
grown or reduced according to need. Also, there are various persistent data stores,
again, each is driven by a resilient cluster that can be grown or reduced according to
need. Figure 1 shows the concept: data enters the Kafka system on the left and
progresses to the right. The green cluster reads, processes, and puts different data into
the Kafka bus; as soon as that starts the yellow cluster pulls and pushes; eventually the
whole pipeline is working. The clusters may also be reading and writing the data stores.

We also include the web and annotator nodes in this picture (bottom and right), as well
as the mining nodes, although they are not part of the data ingestion pipeline. The web
server nodes support users by delivering web pages and responding to API requests.
The annotator nodes may be far from the Lasair computing centre and not controlled by

1 In this document we use the term “node” as an implementation agnostic way of referring to an element of
the Lasair system. In the current deployment this generally means a virtual machine, but in principle it
could mean a container, a physical server or some other instantiation.

2 In Kafka terminology, each message has an associated offset. When a consumer has fully processed a
message it commits that offset to tell the Kafka broker that the message is processed and need not be
served again to members of the same consumer group.

DESIGN OF LASAIR INFRASTRUCTURE

4

us, but they are in this picture because just like the others, they push data into the data
storage and may read from Kafka. For more details, see section 2.3.7.

2.3 Roles for nodes

2.3.1 Kafka
The Kafka system is represented by the green nodes in Figure 2 as well as the grey
arrow at the top. It is responsible for reading and caching the alert packets from the USA,
as well as sending it to the compute nodes and receiving their resulting packets.

The Kafka infrastructure is shown in Figure 2. There are actually two separate Kafka
systems: a private system for the Lasair ingestion, designed for high throughput and
large cache (dark grey arrows); the other a public system, that is for pushing streams of
requested alerts to users.

2.3.2 Ingest

 Input: Avro-formatted alert packet
 Output:

o Cutout images to shared filesystem, CephFS,
o Lightcurve to NoSQL database,
o JSON-formatted alert, with no cutouts, back into Kafka

An Ingest node reads the original alerts alerts from the Kafka system, and puts the cutout
images in the shared filesystem, the recent lightcurve to NoSQL (Cassandra) database,
then reformats the alert as JSON – since there is no binary content – then pushes that
into the Kafka system. The ZTF alert includes 30 days of recent detections – LSST alerts
will have a year of detections. The Cassandra lightcurve store, however, has full length
lightcurves – ZTF has been running for four years now.

Figure 1. The Lasair processing pipeline. Each processing stage can have several compute
nodes that are all executing a specified role in parallel. Nodes pull from and push to the Kafka
system; nodes pull from and push to the persistent data stores.

DESIGN OF LASAIR INFRASTRUCTURE

5

2.3.3 Sherlock

 Input: JSON formatted alert
 Output: The same alert with the addition of Sherlock data

Each Sherlock node has a SQL database of 5 Tbytes of astronomical sources from ~40
catalogues. The sky position of the input alert is used to intelligently decide on the most
likely associated source from the catalogues, finding out, for example, if the alert is
associated with a known galaxy, or if the alert is a flare from a known CV (cataclysmic
variable). The speed of the Sherlock evaluation can be multiplied by adding further
replicated nodes, each with its own 5 Tbyte database. We have also prototyped a cache
system, so that when the same sky position is presented again, the result can be
produced from cache.

2.3.4 Filter

 Input: Alerts with Sherlock addition
 Output: User-created streams on public Kafka, Records for the SQL database

Each filter node computes features of the 30-day light curve that comes with the alert (a
year with LSST), as well as matching the alert against user-made watchlists and areas.
Records are writen to a local SQL database onboard the node for the object and features,
the Sherlock data, the watchlist and area tags. Other tables have already been copied
into the local database from the main SQL database (see Background Services below).
After a batch of perhaps 10,000 alerts are ingested to the local database, it can now
execute the user-made queries and push out results via the public Kafka system – or via
email if the user has chosen this option. The tables in the local database are then pushed
to the main SQL database and replace any earlier information where and object is
already known. Once a batch is finished, the local database tables are truncated and a
new batch started.

2.3.5 Mining

 Input: Set of objectIds, code to run on light curves of those objects
 Output: Results of that code

These nodes can run massively-parallel computations on the light curves or cutout
images. A controller farms out subsets of objectIds to worker nodes, which can fetch the
whole light-curve of each object from the NoSQL Cassandra system. This system has
been used to recompute the light-curve features that are in the relational database, and
are used in SQL queries. While the technical infrastructure is in place to offer this service
to users, we acknowledge that the mining system runs inside the compute cluster and
has open access to the databases. Therefore giving users this capability still requires
work to protect the Lasair systems from damage. So as of Oct 2022, the mining system
is only available to Lasair staff. For more information see section 3.3.3.

2.3.6 Web

 Input: User clicks and API requests; SQL and NoSQL databases
 Output: Saved queries, watchlists, areas

The Lasair webserver and API server allow users to control their interactions with the
alert database and the stream. They can create a watchlist of their interesting sources,
and Lasair will report crossmatches with members of the watchlist. They can define
regions of the sky, and Lasair will report when alerts fall inside a region. They can define
and save SQL queries that can run in real time as filters on the alert stream.

DESIGN OF LASAIR INFRASTRUCTURE

6

2.3.7 Annotator
The Lasair API supports annotation: a structured external packet of extra information
about a given object,that is stored in the annotations table in the SQL database. This
could be, the result of running a machine-learning algorithm on the lightcurve, the
classification created by another broker, or data from a follow-up observation on the
object, for example a link to a spectrum. Users that put annotations into the Lasair
database are vetted, and administrators then make it possible. That user will run a
method in the Lasair API that pushes the annotation: all this can be automated, meaning
the annotation may arrive within minutes of the observation that triggers it.

2.3.8 Openstack
Openstack [9] is an open-source platform to controls pools of compute, storage, and
networking resources, all managed through APIs or a dashboard. Additional components
provide orchestration and fault management. Lasair is deployed on an Openstack cloud,
allowing easy instantiation of compute nodes that are connected to virtual storage.

2.3.9 Lasair-Deploy
The Lasair team has a deployment system, enabling easy instantiation of a fully-capable
system as in Figure 1, installing all the necessary software and configuration. The Lasair
model of a pipeline of clusters relies on Ansible [10] to provision each new node in a
given role. The Lasair-Deploy system orchestrates deployment of an entire cluster, in a
way that is quick, repeatable, reproducible, flexible, and self-documenting. Deployments
can adapt to dev/testing/production as required.

It uses OpenStack Heat, a service to orchestrate composite cloud applications using a
declarative template format through an OpenStack-native REST API. It creates disparate
resources in one go, e.g. instances, volumes, floating IPs – known as a stack -- and
defines relationships between them.

3 Infrastructure Components
3.1 Data Transport

In production deployments of Lasair, the Kafka cluster is deployed using at least three
instances and a replication factor of two (see Figure 2), thus it can continue to function
with the loss of any one such instance and recover when the instance is restored.

Kafka clients can be configured to operate with either at-least-once or at-most-once
delivery semantics. Since duplicate alerts are generally preferable to missing
ones we have tried to use the former. Lasair components are therefore designed to
be, as far as possible, idempotent; that is, the ultimate system state should
be independent of how many times and in what order the alert messages are processed.

DESIGN OF LASAIR INFRASTRUCTURE

7

3.2 Data storage

While each node of the Openstack system has its own storage volume, there are three
shared data systems – see the bottom of Figure 1. Given that users interact with Lasair
through SQL queries, there is an SQL database to execute these; there are also local
versions of this database on the filter nodes that are used to execute queries on each
batch of alerts as they are received. Early prototypes of Lasair used the SQL database
to also store the detections of objects, but we found that the database became very large
very quickly. Therefore the lightcurves (sets of detections) are kept in a separate NoSQL
database keyed by objectId. In this architecture, users query on object features (eg
variance of magnitude) but not on individual detections. Once suitable objects are
selected, their lightcurves can be retrieved from the NoSQL database. The third shared
data system is a shared filesystem – CephFS – that all notes can mount.

3.2.1 SQL database
The first Lasair prototype used the MySQL/MariaDB database that runs on a single node,
but we have now upgraded to Galera[11], a multi-master cluster based on synchronous
replication. Galera provided both scalability and resilience over the single-node original3.

The SQL database drives the webserver and API through Django, and also executes
user queries on the object table, joined with other tables. Of course great care must be
taken if a user can create SQL and have it run on the central database: we must be
careful of ‘SQL injection attacks’. Care has been taken that users cannot damage the
database or the operation of the Lasair system through malicious or badly-made SQL
clauses. Lasair does not accept whole SQL statements from users, but rather clauses
that are sewn together. In doing this, there are some precautions and modifications
applied to the SELECT and WHERE clauses that the user provides:

 User-written queries run on a read-only account on the database
 An execution time limit is enforced
 A limit on output rows is enforced

3 Lasair retains the option of deploying using a single MariaDB instance where replication is not required,
e.g. for development deployments.

Figure 2. The Lasair Kafka system.

DESIGN OF LASAIR INFRASTRUCTURE

8

 Some words are prohibited: some examples are create, select, from, where,
join, inner, outer, with, union, exists.

 All queries are run first with ‘LIMIT 0’ appended as a syntax check
 There is a careful parsing of parentheses and brackets.

3.2.2 NoSQL database
For the lightcurve store, Lasair uses Apache Cassandra [12], an open source NoSQL
distributed data store that is resilient, scalable, and elastic. Data replication is built-in
and in the current deployment there are three copies of all data in the five node cluster.
The vast majority of queries to Cassandra are to request detections pertinent to specified
objects (lightcurves) but the data can also be reorganised to query by sky position if
necessary. (This is tested but not yet fully integrated.) Data is organised by default by
object, timestamp and detection id. Addition of load & storage capacity is managed by
simply adding more nodes. The Cassandra Query Language (CQL) has strong
similarities to SQL, and makes query implementation (bearing in mind the limitations
imposed by the distributed by-object data indexing) for both reading and writing very
straightforward.

3.2.3 CephFS
The Ceph File System, or CephFS, is a POSIX-compliant file system built on top of
Ceph’s distributed object store, RADOS. CephFS endeavours to provide a state-of-the-
art, multi-use, highly available, and performant file store for a variety of applications,
including traditional use-cases like shared home directories, HPC scratch space, and
distributed workflow shared storage. Lasair uses CephFS to store the cutout images that
come with the alerts, and also as a way for compute nodes to share information.

3.3 Other infrastructure

The major components of Lasair have been described above: processing pipeline,
databases, and user-facing aspects. This section covers the remaining components.

3.3.1 Monitoring
We use Prometheus[13] and Grafana[14] to provide a display of the Lasair system. Each
major component has a red/green panel to show if it working or not. The Kafka flows in
the pipeline are shown, as alerts come in from the USA, then their progress through the
ingest cluster, through the Sherlock cluster, and through the filter cluster.

There is also summary page on the Lasair website, with numbers of alerts that have
passed through the stages, how many are of different categories (eg. Solar System),
how much data sent to the NoSQL and to the SQL databases, as well as a record of the
background services.

The Lasair software has a way to call for human attention through a dedicated Slack
workspace. Throughout the code, many exceptions will cause a Slack message, for
example unable to connect to another node, or insufficient memory, or no disk space.

3.3.2 Background services
There are a number of “cron” jobs that run regularly, some every few hours, some at
midnight UTC before an observing night. The Transient Name Server (TNS) is updated
by pulling all ~80,000 reported transients and making a local copy that Lasair can use;
this is copied to all the filter nodes before an observing run because user filters may use
this table. Similarly, the annotations table is copied to all the filter nodes before each
observing run so they can service queries with this local copy. The emphasis here is to
achieve scalability by making each filter node as independent as possible, without
continual calls to the central SQL database.

DESIGN OF LASAIR INFRASTRUCTURE

9

Lasair has collaborated with other LSST community brokers, that are also using ZTF as
a prototype stream. The Fink and Alerce projects produce Kafka streams of their
classifications, which are pushed into the Lasair database as they appear, through an
hourly cron process.

3.3.3 Massive computing
A new Lasair system is in prototype, to allow large data-mining or other jobs to run on

multiple nodes of the Openstack cloud.
The pattern is illustrated in Figure 3,
where a head node runs a query on the
SQL database to find objects, and this
list is distributed among many worker
nodes. Each worker then fetches the
lightcurve from the NoSQL database,
and computes, the result being a
classification, a discrimination, or other
text; these outputs are then collected by
the head node.

We have implemented this pattern
using SSH, where a head node distributes tasks to worker nodes.

4 Risk and Sustainability
Lasair backs up its SQL and noSQL databases on a regular schedule, on a physically-
distinct machine, although it is a machine in the same rack. The most likely failure
scenario is a disk failure in the Openstack cloud, and that system is already redundant
and can recover and continue until that disk is replaced. Lasair is built to the same safety
standards as the rest of the LSST:UK Data Access Centre.

Lasair is well documented to minimise disruption case of the loss of key staff. There is a
Principles of Operation on the LSST:UK wiki, which is updated with relevant information
every time procedures are done, whenever a staff member says to themselves “I didn’t
know that”. All code is open-source and kept in public off-site Github repositories[15],
with README files to explain how components work. Code changes are seen by the
whole team through code reviews, associated with pull requests. There is a
comprehensive testing system as part of Lasair – unit tests, system tests, and integration
tests. Creating a new deployment is automated with the ‘lasair-deploy’ system.

5 Science Requirements
This report needs to report on how the infrastructure as built answers the science
requirements [16] as repeated here:

5.1 Lasair shall provide

 R2.01 A searchable database containing all the LSST alerts : with time latency
to match the detailed science requirements specified in the document "LSST
Transients and Variables Science requirements; Lawrence et al." -- YES

 R2.02 Light-curves: assimilate all diaSource alerts in diaObjects: providing
interactive webpages (linked to database), plots, ability to select ranges, submit
user added points. – YES, currently for ZTF, with LSST in development

 R2.03 Postage stamps: all LSST detections and most recent non-detections.
Plus multi-colour images from LSST, near infra-red (VISTA/UKIDSS), H-alpha
(VPHAS) and EUCLID, or HST/JWST if space based imaging is available. Size
of postage stamps should be selectable (number of different, fixed sizes). –

Figure 3. The design pattern for massive
computing.

DESIGN OF LASAIR INFRASTRUCTURE

10

YES if this survey is available as a HiPS survey [17] that can be used by
AladinLite

 R2.04 Massive catalogue cross-match: with star, galaxy, AGN, x-ray, radio
catalogues, galaxy cluster catalogues, strong lens catalogues, and provide
classification through boosted decision trees through our already working code
"Sherlock" (Young et al. 2018). -- YES

 R2.05 Cross match to all previously known transients: supernovae, transients,
gamma ray-bursts, x-ray and radio burst sources (e.g. searching for currently
unknown physical links over time) – YES if the transient is registered with
the IAU Transient Naming Service [18]

 R2.06 A database query platform and user-owned storage : for users to query
the database and return their own objects and selections in various useful
formats. This should be both a SQL query form and Jupyter platform. Users
should have access to their own storage where they can store lists of their own
objects (more details in the detailed user requirements R2.13) – YES via
watchlists, watchmaps, and stored queries

 R2.07 In real-time, cross-match to all other wavelength time-domain
surveys: gamma-ray, x-ray and radio (e.g. MEERKat/Thunderkat
through 4pisky.org , Swift, SVOM, eRosita) – NO, not *all* time-domain
surveys, but YES for the Transient Naming Service [18]

 R2.08 Spectroscopic and/or photometric redshift : locate catalogued redshifts of
the likely host galaxy and hence absolute mag (we will link to WPs 3.2 and 3.4
for redshifts) – YES through Sherlock crossmatch

 R2.09 Combine all of the above information: including the first 24hr-48hr
lightcurve trend (e.g. rapid rise/decline) to probabilistically classify all transients
as : supernova – kilonova – GRB – Tidal Disruption Event – AGN – XRB – CV
– eruption star – microlens – orphan – NO but we have the annotation
mechanism so that astronomers can contribute their own classifiers. Also
we ingest classifications from other LSST brokers.

 R2.10 Multi-messenger cross-matching: GW coincidence tag based on their 4
dimensional position in space and time compared to LIGO-Virgo gravitational
wave events (sky position, distance, and time). All transients will also
be Neutrino coincidence tagged based on their 3D space time location (sky
position and time) with IceCube high energy neutrinos. – YES we have GW
coincidence infrastructure

 R2.11 Provide a stream of transients to 4MOST and SOXS spectroscopic
programmes and ingest the classifications and data from those facilities in
return (linked to WP 3.3) – YES

 R2.12 Provide users with a means to upload a "Watchlist" : up to 106 objects
and provide means to triggering on magnitude variations, and allow an
adjustable search radius. -- YES

 R2.13 Collect a detailed list of user requests and implement them : for
additions, enhancements, suggestions, alterations, we will engage with the UK
community to maintain a wish list of enhancements and additions and work with
the Transient and Variable star PoCs to prioritise this list -- YES

5.2 Lasair should provide

 R2.13 Previous history from Pan-STARRS, DES, Skymapper, ATLAS, CRTS,
PTF/ZTF – Not all of these

 R2.14 Test, and if successful, Implement machine learning – YES can be
implemented through annotations

 R2.15 Machine learning algorithms for real-bogus classification: as a final check
on real-bogus objects, we will run our own trained ML code to weed out
spurious objects (Wright et al. 2016, 2017, Smartt et al. 2016). -- NO

DESIGN OF LASAIR INFRASTRUCTURE

11

6 References
[1] Lasair Community Broker: https://lasair-ztf.lsst.ac.uk

[2] Zwicky Transient Facility: https://ztf.caltech.edu/

[3] LSST alert stream: https://www.lsst.org/scientists/alert-brokers

[4] Transient Naming System: https://www.wis-tns.org/

[5] Multi-Order Coverage Maps:

https://www.ivoa.net/documents/MOC/ and https://pypi.org/project/mocpy/

[6] Sherlock system: https://arxiv.org/abs/2003.09052

[7] Apache Kafka: https://kafka.apache.org/

[8] Django web framework: https://www.djangoproject.com/

[9] OpenStack cloud software: https://www.openstack.org/

[10] Ansible Automation Platform: https://www.ansible.com/

[11] Galera Cluster for MySQL: https://galeracluster.com/

[12] Apache Cassandra: https://cassandra.apache.org

[13] Prometheus: https://prometheus.io/

[14] Grafana: https://grafana.com/

[15] https://github.com/lsst-uk/lasair4 and https://github.com/lsst-uk/lasair-deploy

[16] https://lsst-
uk.atlassian.net/wiki/spaces/LUSCSWG/pages/614465537/LSST+UK+Science+Requir
ements+Document, section R2

[17] Hips: Hierarchical Progressive Surveys, http://aladin.u-strasbg.fr/hips/

[18] IAU Transient Naming Service https://www.wis-tns.org/

