
D3.11.2: Demonstration Software for
One Example Catalogue

WP3.11: Cross-Matching and Astrometry at LSST Depths

Project Acronym LUSC-B

Project Title UK Involvement in the Legacy Survey of Space and Time

Document Number LUSC-B-11

Submission date 7/Jan/2021

Version 2.0

Status Final

Author(s) inc. insti-
tutional affiliation

Tom J. Wilson (Exeter)

Tim Naylor (Exeter)

George Beckett (Edinburgh)

Mike Read (Edinburgh)

Reviewer(s)
Bob Mann (UEDIN),
Raphael Shirley (SOTON)

Dissemination level

Public

Copyright LSST:UK Consortium 2017

D3.11.2: Demonstration Software for One Example Catalogue

Version History

Version Date Comments, Changes, Status
Authors, Contributors,
Reviewers

1.0 07/01/21 First draft for review Tom J. Wilson

2.0 22/02/21 Update with reviewer comments Tom J. Wilson

2

D3.11.2: Demonstration Software for One Example Catalogue

Table of Contents

Version History 2

1 Introduction 4

2 Demonstration Software 4
2.1 Deliverable Name . 4
2.2 Preliminary Software . 5

3 Deliverables 5

4 Future Work 7
4.1 Data Access Centre Interactions . 7

List of Figures

List of Tables

3

D3.11.2: Demonstration Software for One Example Catalogue

1 Introduction

WP3.11 is investigating the astrometry of LSST. An unprecented parameter space in optical
photometric surveys, the depths to which the Rubin Observatory will probe during its 10-year
initial survey will challenge data reduction and analysis tools. We are focusing on the problems
surrounding the creation of value-added catalogues: those combining the LSST dataset with
external, ancillary catalogues, to improve the science that can be done. To achieve this, we
must identify those sources in common between the two catalogues which are truly one physical
object on the sky, for which we have two detections. These must be, in turn, differentiated
from sources which simply happen to appear very close in the sky to one another, but are
two independent sources in the sky. This process of creating a single, composite dataset is the
”cross-matching” of the two catalogues.

The challenge for LSST is primarily one of sheer source counts. Never before has an optical
survey reached the expected depths of LSST – 27th magnitude at its full completeness limit
– and thus never had to cope with the increase in source detection rate that goes along with
such sensitivity. And yet the survey will still be limited to ground-based resolutions, with the
atmospheric distortions that ”spread” out otherwise point source objects into a larger pool of
light on the CCD of the telescope. When crowding of sources, as we expect for LSST, becomes
significant, these ”point spread functions” (PSFs) can and will start to overlap one another. Thus
a very bright source can ”hide” within its PSF a faint object, which the detection algorithms will
fail to include in the final catalogue of objects produced by the ”LSST stack”. Unfortunately, the
faint source can influence the measured position of the bright source, even if it was not detected,
by subtly tugging on the centroid of the bright object during its position determination.

Usually a photometric catalogue records the measured position of a source, and a corresponding
uncertainty: the precision with which the algorithms and pipelines were able to pinpoint the
determined position. For LSST, these precisions will be very good, and thus the positions will
likely be quoted to high confidence. Crucially, however, these ”tugs” from faint sources, buried
within the light of the brighter source, can be larger than the precisions with which sources are
pinpointed, and thus the simple questions asked by traditional cross-match algorithms ”given
the positions and corresponding precisions of these two sources, how likely are they to have
the same sky position?” will break down. It is overcoming this limiting factor, expected to be
significant for LSST, that WP3.11 is most interested in.

2 Demonstration Software

To enable more robust cross-matches of LSST and other catalogues, including the effects of
position perturbation from blended objects, WP3.11 is mainly tasked with the creation of new
software to allow for such cross-matches to occur. These matches will then be hosted on the
UKDAC, accessible to users. Thus, after we had established it was possible to overcome or
sidestep a few implementation challenges (see the D3.11.1 report for more details), we began the
establishment of the codebase core, on to which the more advanced, and WP-focused, algorithms
could be added.

2.1 Deliverable Name

The formal deliverable for D3.11.2 is titled ”Demonstration Software for One Example Cata-
logue”. This is because, during the proposal phase for this WP, it was envisaged that demon-
stration code would be written to specifically match an example catalogue pair, the code then

4

D3.11.2: Demonstration Software for One Example Catalogue

moved to run on the DAC and subsequently generalised to allow for any catalogue combinations
in D3.11.3. In practice we thought it would save time to go directly to writing the software for
the DAC, skipping the demonstration software. Thus D3.11.2 should really be ”Demonstration
of Preliminary Software for DAC Integration”. The software that forms D3.11.2 is an end-to-end
complete cross-match code, installable by the end user, featuring documentation, but does not
yet have the sophisticated algorithms which are WP3.11’s main task and will be the focus of
D3.11.3.

2.2 Preliminary Software

The software that delivers D3.11.2 is a full, end-to-end, ”many-to-many” cross-match code,
capable of accepting two catalogues and producing posterior probabilities of likely matches and
non-matches between ”islands” – sources potentially astrometrically correlated with one another
and definintely not correlated with any other source – of sources across the two catalogues.
This limit to two catalogues, but allowing for inclusion of multiple matches simultaneously, is
what makes it a ”many-to-many” match software. It accepts the astrometric uncertainty –
the precision with which sources were centroided – and uses the normalised on-sky separation
of two sources to calculate their relative match likelihood. This simple match assumption –
the natural assumption of most match algorithms, ignoring any other systematic effects which
might cause separation between sources, such as proper motions or blending – and the non-
inclusion of any other discriminating information that might be used to distinguish between
two competing counterparts for a source mean that this implementation is currently a ”naive
Bayes” cross-match. However, these assumptions hold for a large number of previous generation
photometric catalogues, and even in its half-finished state the cross-match codebase provides
useful functionality.

3 Deliverables

The main deliverables for this work, being software development, are available online. As per
the Project Management Plan, software development should be maintained in a version control
repository. The main codebase is therefore located at https://github.com/Onoddil/macauff. It
features a full test suite for validation, as well as functionality to generate test data to input
into the cross-match algorithm for end-to-end verification. The folder structure is as follows.

• Top-level files.

– CHANGES.rst: changelog file, itemising the updates to the codebase.

– LICENSE and README.md: details of licensing of codebase, and a top-level overview
description of the software.

– MANIFEST.in, pyproject.toml, and setup.cfg: minor files that aid with the setup
and installation of the Python package.

– python-package.yaml: within the .github/workflow folder, this details the GitHub

virtual environment setup and the running of the test suite.

– setup.py: main installation file for the Python package, which describes the various
dependencies for installing the package, and controls the compiling of fortran code.

– tox.ini: configuration file describing setup of the tox environment for test purposes.

5

https://github.com/Onoddil/macauff/tree/7891efc9e5edc30febb2d3bcfdb14e97252493d0

D3.11.2: Demonstration Software for One Example Catalogue

• Documentation files, docs/.

– conf.py: configuration file, for Python automated creation of documentation.

– *.rst: files containing the raw text that makes up the documentation of the codebase.

• Code files, macauff/.

– init .py: File used during the installation process, indicating which files and func-
tions should be importable.

– counterpart pairing*: Python and Fortran code (.py and fortran.f90 respectively)
to run the cross-match assignment functionality and calculate cross-match probabil-
ities.

– group sources*: Python and Fortran code used in the generation of “islands” of
potential counterparts, independent of other sources in the respective catalogues.

– make set list.py: Python script used in group sources.py to derive “sets” of source
overlaps on astrometric considerations, based on lists of sources near to each object.

– matching.py: Python code handling the overall cross-match process.

– misc functions*: Python and Fortran code that is used in multiple places throughout
the cross-match process, and hence cannot be kept within any single script.

– perturbation auf.py: Python code to handle the creation of “dummy” arrays for the
perturbation component of the Astrometric Uncertainty Function. Main algorithms
currently not implemented, and included for future backwards compatibility.

– photometric likelihood.py: Python code to handle the creation of source match like-
lihoods on photometric grounds. Also currently not implemented for the most part,
and featuring backwards compatible code.

– shared library.f90: Similar to misc functions, contains subroutines that are needed
across other Fortran modules, and are therefore accessible from those other files.

– Test files, tests/.

∗ init .py: same as in the parent folder.

∗ test *.py: Unit test scripts, one per Python script in the folder above, to ensure
consistency and accuracy of the main codebase.

∗ Data files, data/.

· *.txt: example files of the configuration files used in the cross-match process.

In addition, to aid in the review, preliminary documentation – guides to installation and getting
started with the codebase – is available at https://onoddil.github.io/macauff/. This documen-
tation, formed from the raw files in macauff/docs in the repository, is structured as follows.

• Homepage: brief description of module and links to various starting pages.

• Installation: details the installation process of the module, its dependencies, and how to
run the test suite to ensure successful installation.

6

https://onoddil.github.io/macauff/

D3.11.2: Demonstration Software for One Example Catalogue

• Quick Start: description of how to begin working with the package, describing the neces-
sary files to run a cross-match, and giving examples of how to run matches between two
catalogues.

• Inputs: more in-depth descriptions of each parameter that should be specified in the input
configuration files used in the cross-match process.

• Documentation: collection of available functions within both the Python and Fortran code
in the codebase, describing the inputs and outputs from each function or subroutine in
detail.

4 Future Work

The main focus of D3.11.3, now that WP3.11 has an established codebase for its software
development aims, is to implement the extended algorithmic aspects of its remit. First, we
must include the algorithmic components that extend the Astrometric Uncertainty Function
from the simple assumption that centroiding uncertainties are the only component, and include
a prescription for the uncertainty in position that derives from the perturbation of a bright
source by a fainter contaminant source within its PSF. Second, we plan to include an additional
improvement to better provide users confident cross-matches: the use of the photometry of the
sources to distinguish between true coevality in sources and happenstance astrometry; this can
be achieved using the idea that as an ensemble sources of 15th magnitude in one optical bandpass
are going to have a roughly 15th magnitude source near to them in a similar optical wavelength,
but unlikely to experience a 22nd magnitude source being coeval with them.

In addition, we plan to extend and improve the user documentation, both for the current features
and for the additional features to be implemented. This is crucial to ensure that the codebase
is useable by the LSST:UK project after the end of this current work package.

4.1 Data Access Centre Interactions

One major aspect of WP3.11, which sits in parallel with the deliverables, is the interactions
between the “Dev” (WP3.11) and “DAC” (WP2.5) teams. Our significant output is so-called
Rubin “User Generated Products” – extra products which use and extend Rubin data. We
therefore require the DAC to host these products such that users can interact with them once we
have generated them for a given catalogue-catalogue combination. The workflow also requires the
generation of appropriate input tables for the software, which will take the two input catalogues
and reduce them to a canonical format for use in the WP3.11 software.

This interaction between WP2.5 and WP3.11 necessitates the formation of workflow documen-
tation, such that these interactions can continue beyond Phase B and WP3.11. We are in the
process of formalising these interfaces between the DAC team, WP3.11, and the community.
We attach here a draft overview of the in-progress interface document, as the interactions be-
tween the DAC and WP3.11 were moved forward to be part of the D3.11.2 deliverable during
the rearrangement of the package (see section 2.1 for a brief outline of the change). Formally
this interface document should be a part of the D3.11.3 deliverable, however, and hence the full
interface document will be finalised in due course.

7

WP3.11 DAC-DEV INTERFACE REQUIREMENTS

5

2 Work Package Scope and Implementation
Work Package 3.11 will produce three types of output:

 Cross-match Algorithm – the team will develop and publish a novel algorithm for
more accurate identification of cross-matches between catalogues, especially
targeted at the challenging case of crowded fields. Specifically, the algorithms will
allow objects in the LSST object catalogue to be matched confidently to
corresponding objects in other, relevant, astronomy catalogues.

 Cross-match Software – the team will produce a software implementation of the
cross-match algorithm that is capable of handling LSST-scale catalogues in
production, as part of the UK Data Access Centre.

 User-generated Products – the cross-match software will be applied to a number
of different third-party catalogues (to be determined) to create new datasets that
capture the correspondence between LSST objects and their counterparts in the
specified third-party catalogues in a form that can easily be incorporated into end-
user analysis tasks. To maximise their relevance, these new datasets will be
produced in a timely manner, once all of the relevant input data is available.
Because LSST data products will not be available until after the end of WP3.11, the
team will only demonstrate the ability to produce these User-generated products,
based on representative precursor surveys and/ or LSST data previews.

For each third-party catalogue, a four-step workflow is envisaged:

1. A survey catalogue, to be cross-matched, will be identified.
2. Both the LSST data and the third-party catalogue will be pre-processed into a

canonical format suitable for ingestion into the cross-match software. In part, this
will involve extracting (reducing) the essential information needed to perform the
cross-match.

3. The Cross-match Software will ingest and analyse the survey inputs, creating a
new dataset that describes identified correspondences between the two surveys,
as well as identifying those sources for which no identified counterpart exists.

4. The cross-match dataset will be added to the UK DAC, in a way that is accessible
and useful to DAC users for their science.

Each of these four steps involves one or more interfaces, which are described in more
detail in the next section.

The length of the LSST survey (expected to be over 10 years, during 2023—2033) and
because, at the time of writing, the WP3.11 team only have funding to develop the cross-
match algorithm and software during Phase B (effectively, until 2023), consideration
needs to be given to the sustainability of the software.

Over the lifetime of the survey, various changes that will affect the cross-match software
(and, possibly, algorithm) should be anticipated:

 The platform on which the software is run will change. Not only will hardware be
deprecated and replaced, but also the form of the hosting platform and supporting
technologies will change.

 It is possible that bugs will be identified in the software (or algorithm) beyond the end
of WP3.11, which need to be fixed or worked around.

 It is possible that new functionality will be required, beyond the end of WP3.11, to
address unanticipated opportunities and applications.

WP3.11 DAC-DEV INTERFACE REQUIREMENTS

6

Software sustainability, without a funded development team, is very challenging. It is not
possible to address the issue completely in this document, but there are steps that can
and should be taken to reduce the potential threats, which include:

 It becomes impossible to use the software, because it becomes incompatible with
available hosting platforms in the UK DAC.

 It becomes impossible to use the software, because bugs that make the outputs
meaningless, cannot be resolved because the understanding of the software and
algorithm has been lost.

 It becomes impossible to reproduce/ verify science outputs, because the conditions
under which User-generated Products have been produced is not determinable.

To address this, the UK Data Access Centre is taking a number of steps, summarised
as follows:

 Software Preservation is at the core of LSST:UK planning and provisioning.

 Software sustainability and accessibility is one of the criterion by which LSST:UK
software deliverables are assessed.

 Where possible, software will be developed using an Open Source philosophy, to
promote community engagement in the use and development of the software, and to
avoid crucial information being inaccessible.

 Where practical to do so, open standards and/ or widely supported interfaces and
technologies will be adopted in preference to proprietary or custom interfaces.

 Understanding of the software, and underpinning algorithms, is shared between
multiple people, to reduce the risk due to staff movement and consequent knowledge
loss.

 Algorithms and software will be supported by design and implementation
documentation that is sufficient to allow the work to be reproduced (assuming effort
is available to do so).

Key steps that should be taken for Work Package 11, to support these tactics is
described in Section 3.

WP3.11 DAC-DEV INTERFACE REQUIREMENTS

7

Figure 1: Workflow for generating a Cross-match Catalogue.

	Version History
	Introduction
	Demonstration Software
	Deliverable Name
	Preliminary Software

	Deliverables
	Future Work
	Data Access Centre Interactions

