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1 Executive Summary

LSST catalogues will be so deep and crowded that traditional “error circle” catalogue cross-
matching techniques will fail. This work package will match the LSST to external datasets using
modern cross-matching algorithms providing match tables and software to the community. There
are three distinct threads to the work required. First is to use the full power of the astrometric
uncertainties of the LSST by using a Bayesian match which assumes a Gaussian distribution
of counterpart separations. A large fraction of LSST fields are sufficently crowded, however,
that such matching will produce many false negatives because faint, unresolved contaminants
in the point spread functions of stars can move their center-of-light by amounts far larger than
their formal astrometric uncertainties. So, our second thread will model and correct for these
non-Gaussian effects. This in turn can have the effect of weakening the ability to decide between
counterpart and field stars. So, our final thread is to use a newly developed algorithm to include
the photometric information from the two catalogues, which typically improves the Bayes factors
of true counterparts by a factor of 10.

As unresolved contaminants much fainter than the limiting magnitude of the survey can have a
significant effect on the astrometry, a model is required for the distribution in magnitude of these
stars. Existing galactic models were not thought to be deep enough for LSST, and so deliverable
D3.11.1 for this work package was to find or create a model for these stars. Instead we have
shown that such a model is not required, by considering the intrinsic noise in the centroid of
the stellar image. If we limit ourselves to modelling contaminants which produce a shift larger
than 5% of the centroiding noise, existing galactic models will suffice. In solving this problem
we have also taken the opportunity to revisit our model for exactly how contaminating stars
affect the centroids, specifically the difference between surveys which use centroiding algorithms
and those that use point-spread-function fitting. We already had a model for centroiding, and
now have one for point-spread-function fitting which we have validated against WISE.

This report therefore fulfils deliverable D3.11.1 in that we now know we have models deep enough
to be able to model the effect of faint stars at LSST depths. In addition we also give an outline
of the science drivers and the overall plan for this work package, and our progress so far. Further
technical details are supplied in an additional journal-style report.
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2 Introduction

A significant fraction of LSST science will be based on being able to find reliable cross-matches
between objects in the LSST and catalogues in similar or other wavebands. The two main uses of
such cross matching will be the provision of multi-wavelength spectral energy distributions and
identifying outburst progenitors. Traditionally astronomers have used simple nearest-neighbour
matching to find counterparts, choosing the closest star within a given radius, or if there is no
star within that radius assigning it as having no counterpart. The fraction of false matches
that will be obtained if we persist in using this approach for the LSST is shown by considering
a field at l=30◦, b=−20◦, i.e. significantly removed from the Galactic Plane. Even here the
galactic models show that at i=26.7 (LSST full survey depth) roughly 25 percent of objects will
randomly have a star within 2” separation. Lower galactic latitudes are worse, and at higher
galactic latitudes the density of galaxies in the Hubble Deep Field North is similar to that of
stars at l=30◦, b=−20◦. So, for very large swathes of the sky spurious counterparts will be a
serious issue. Yet, without this package simple error-circle matching between LSST positions
and the external catalogues is the default position for all programmes we know of.

2.1 Simple Bayesian cross matching.

Simple error-circle matching throws away key information; the closer together stars are, the
more likely they are to be counterparts of each other. As a result, modern methods are based
on using the astrometric uncertainties and relative densities of counterparts and field stars (at a
given magnitude) to assess how likely a given pairing is. This is always done within a Bayesian
framework, based on the method discovered by Sutherland & Saunders [1]. The advantage of
such methods in crowded fields is that they often show that an association made on the basis
of an error circle has a separation which is simply too large to be a credible pairing given the
precision of modern astrometry.

2.2 The Astrometric Tug.

Necessary as these Bayesian methods are in crowded fields, they are vulnerable to under-
estimates of the true astrometric uncertainties. Hence the importance of a paper by the work-
package PDRA and PI [2], whose essential message is that undetected faint stars in the PSFs
of brighter stars will “tug” the astrometric position of the brighter star, so that the difference
between its true and measured positions can be far larger than the nominal astrometric uncer-
tainties. This is illustrated in Figure 1, where the dotted lines show the expected 1D (radial)
distribution of counterpart separations for WISE-Gaia matches assuming the counterparts are
distributed as a 2D Gaussian with the uncertainties given by the WISE catalogue. The error
bars show the true distribution, which has a long tail to large separations. As a result, using
the formal Gaussian astrometric uncertainties in the Galactic Plane loses about 50% of the true
counterparts. The contaminating stars causing the problem can be very faint; so faint that they
would lie below the survey completeness limit even if there were not a bright star there.

Crowding in the Galactic Plane (in terms of stars per PSF) is very similar for LSST single
visits and WISE, so astrometric tug will be a serious problem for LSST. We can estimate how
widespread in the following way, given the caveat that it depends on what fraction of stars have
counterparts, and how source counts extrapolate to faint magnitudes, which we cannot know
until we carry out the work proposed here. If we examine a field at at l=30◦, b=−5◦ we are just
inside the area of the plane covered at the shallower depth in the current scheduling models, i.e.
in one of the lower density areas of the plane survey. Here we estimate from TRILEGAL [6] that
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Figure 1: The underestimation of the astrometric uncertainty due to crowding. This figure com-
pares the quoted WISE uncertainties (black dotted line) with the actual distribution
of counterparts as a function of distance between star and counterpart in a crowded
region (black error bars). The solid black line is a model of the astrometric uncer-
tainties which includes the effect of contamination, which produces the long wing to
the distribution. The red coloured data are from a somewhat less-crowded region,
and demonstrate how the true astrometric uncertainties in less crowded regions tend
towards the uncrowded model.

roughly a third of counterparts will be missed by conventional Bayesian matching (i.e. using
Gaussian uncertainties); the rest of the plane and some regions of the Magellanic Clouds will
probably be worse. Move to l=30◦, b=−10◦ and the stellar density decreases, but the survey
depth increases by a magnitude, yielding 5 to 10 percent missed matches. I.e. significant areas
outside the plane will also be badly affected by astrometric tugging. Finally, whilst the focus of
this proposal is solving the astrometric tug problem for cross matching, our solution will carry
over to both proper motions and parallaxes for faint stars.

2.3 Using the photometric information.

Were we to implement the simple Bayesian matching outlined above, i.e. correctly model the
effects of astrometric tugging but take no further action, the long tails in Figure 1 would dra-
matically increase the number of false positives, limiting the astrophysics we could undertake.
Fortunately, there is still more information we can use; the magnitudes of the stars in both
catalogues. For example, an object of r=15 is very unlikely to be fainter than K=15 (see also
Figure 2). In a second paper [3] we demonstrated how to use this information in a Bayesian
framework, and show that typically it improves the Bayes factors for true matches by a factor
10. Unlike an earlier attempt [7], this does not rely on having a physical model for the object,
but uses the distribution of magnitudes of counterparts and field stars, and so a single technique
will be widely applicable.
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Figure 2: The distribution of magnitudes in the WISE W1 filter for stars that do not have
counterparts in Gaia (red line) and stars that have Gaia counterparts between G=14
and 15 (black line). The region of sky used is 131◦<l<138◦ and −3◦<b<3◦. It is clear
that a star of W1=15 close to a star of G=14.5 is (on photometric grounds at least)
far less likely to be a counterpart than one of W1=12. Using this information, along
with the sky density of counterparts allows us to eliminate faint accidental correlations
as plausible counterparts. (The two peaks of the counterpart distribution correspond
to dwarfs and giants.)

2.4 The final products.

We intend to match to VISTA, VPHAS, WISE and Spitzer, with the ability to extend to
EUCLID and other surveys if there are good science cases. For each survey the primary outputs
from this work package will be cross-match tables which give, for each LSST source, the best-
matching source in the other catalogue, with the probability that it is a match. For each survey
we will also give a corresponding table which lists each source and its corresponding LSST best-
match. Where there is no good match, the tables will give the probability that the source has
no counterpart in the other catalogue.

3 Deliverable 3.11.1

3.1 The astrometric uncertainty function.

One of the key concepts for this work package is the Astrometric Uncertainty Function (AUF).
Given the measured position of a star the AUF is the probability density function describing the
possible positions of a star. Naively one may think this is a simple two-dimensional Gaussian,
but as discussed above it has very broad wings which are caused by the faint, undetected stars
which subtly shift the measured position.
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3.2 The problem

As one moves to fainter magnitudes, the number of perturbers becomes larger, though each
makes a smaller contribution. Initially one may think this means one has to understand the
magnitude distribution of stars to the very faintest limits (far below the limiting magnitude of
the catalogue). Actually, once one reaches a magnitude where the number of contaminating
stars is larger than one, then the effects begin to average out. When this occurs depends on
the size of the point-spread function relative to the density of stars, but based on Wilson &
Naylor [4] we anticipated this would occur approximately 10 magnitudes below the LSST limit
of 27th magnitude. This implied we need a model which reaches 37th magnitude, far below that
available from TRILEGAL [6]. Deliverable 3.11.1 was to solve this problem.

3.3 The solution

We realised that although the faint perturbers do change the position of the star, this becomes
largely irrelevant once the perturbation is less than the noise in the measurement of the position
of the star. We developed a simple analytical model for this effect, which showed that if we
wanted un-accounted perturbers to make a no more that 5% contribution to the astrometric
noise budget, then for the faintest stars we needed to have a galactic model which reached only
five magnitudes below the completeness limit, which TRILEGAL (just) does. The same model
then allowed us to show that the situation is less critical for the brighter stars.
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Figure 3: The new model AUFs (red lines) compared with the distribution of positions of Gaia-
WISE cross-matches for W1 '12, 14.5 and 17 (shown as black error bars). The new
AUF is a weighted average of the original flux-weighted centroid calculation of [4]
(shown as a solid black line, which is hidden under the red line in the top panel) and
the new background-dominated PSF derived centroid (the dashed black line). This
figure shows how the final AUF changes from the photon-dominated model of [4] at
high fluxes to the background dominated model at low fluxes. It also shows that the
original model worked less well at faint magnitudes, but is significantly improved by
the addition of the background dominated component.
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3.4 Modelling the astrometric uncertainty

One of the inputs into the astrometric uncertainty function is an understanding of how the
positions are measured in the original survey, so that the effect of faint perturbing stars can be
calculated. In principle one should do this by injecting synthetic sources into the raw images,
and then re-running the entire data reduction process for the survey in question. This is not a
practical option, and in practice the effect of the data reduction pipeline is best simulated by
a simplified model. There are two ways which surveys use to measure positions, either profile
fitting or straightforward centroiding. Our understanding of the LSST pipeline is that it will use
a combination of both of these, whereas the original version of our software assumed centroiding.
This is not a bad assumption even when profile fitting has been used, because the distribution
of posterior probabilities are such that changing the threshold at which a star is considered a
counterpart from 0.9 to 0.95 (i.e. halving the threshold in the not-counterpart space) rarely
changes the sample significantly. That said, having a model for profile fitting would improve
our results, not only for the LSST catalogues but also because many of the catalogues we will
match to also use profile fitting.

Recalculating the effect of the faint stars on the AUF gave us the opportunity to revisit this
issue, and we had the means to test the results as WISE uses profile fitting. We therefore
devised a semi-analytical model of the effects of faint perturbing stars on positions measured
by profile fitting. This model has two extremes, faint stars where the background light ensures
the pixels all have approximately equal uncertainties (the “background limited case” described
in, for example [5]) and bright stars where the uncertainty is dominated by photon noise from
the star. For the latter it turns out we can use our original aperture model from [4]. The final
model is a mixture of these two depending on the brightness of star.

We can test the verisimilitude of the model by measuring the difference in position between WISE
sources and their Gaia counterparts for many WISE sources, and then plotting the resulting data
as density of counterparts per arcsecond in radius as a function of radius. Figures 3 show the
result of comparing such data with the old and new AUF models. The improvement is significant,
and will allow us the flexibility to deal with the LSST data whichever position-finding algorithm
it uses.

3.5 Modelling the flux contamination

The astrometric perturbation also gives an indication of the flux contamination, since objects
distant from their counterparts probably have significant flux within their PSFs from the per-
turbing star. As is the case for the astrometric perturbation, this photometric perturbation will
depend on how the flux is measured. We have undertaken some work which shows that it is
likely we can build a model for PSF fitting as well as our current estimates for aperture photom-
etry, and that we will not need a galactic model any deeper than required for the astrometry.
However, the photometric work is lower priority, and so we have not proceeded further with this
so we can stay on track for delivering D3.11.2 and D3.11.3 on time.
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Report for D3.11.1. Improvements to the AUF: updated algorithms
for background-dominated sources and improved derived flux
contaminations.

Tom J. Wilson and Tim Naylor

ABSTRACT

If we are to assess whether or not the positions of two images of stars observed in different
surveys are actually the same star we need to understand the uncertainties in their positions.
In addition to the uncertainty due to photon noise there is an additional error due to faint
stars blended into the image which perturb centroiding. The combination of these sources of
uncertainty we refer to as the Astrometric Uncertainty Function (AUF). In principle to estimate
this one needs to understand the distribution of contaminating stars to very faint magnitudes,
roughly 10 magnitudes fainter than the survey limit, i.e. g = 37 for LSST (Wilson & Naylor
2018). This is deeper than the standard Galactic models, and so Deliverable 3.11.1 was to
build a contamination model which worked to these depths.

Here we show that we can sidestep this requirement, at least for LSST, by consideration
of the noise levels of a given observation. Simple noise considerations show that at the faint
end of a survey it is only necessary to consider perturbers up to 5 magnitudes fainter than the
central source, for a very conservative estimate of including sources which contribute errors
in the centroid equivalent of up to 5% the noise of the primary object in the PSF. Hence we
deliver D3.11.1 not as an improved model of the contamination, but as an understanding of at
what magnitude difference between a star and its perturber the photon noise in the centroid
comes to dominate noise due to perturbers. In addition, we consider both astrometric limits –
as the sole consideration of previous efforts – but also the photometric limits, ensuring that
simulated results give consistent flux contaminations at all brightnesses. This considers the
cumulative expectation number of sources within a given PSF circle down to some ∆m limit,
and the probability that zero sources are drawn. Limiting this to a sufficiently small fraction
we can derive an acceptable perturber relative flux ratio, and show that this, along with the
astrometric limit, is within the 5 magnitude faint limit constraint laid out previously.

Additionally, we derive a more accurate model to describe the perturbations of sources in
the background-dominated case, crucial for ensuring the AUFs of the very crowded, faintest
LSST objects are as well-modelled as possible. This model, and the AUF previously derived for
bright objects whose source noise is dominant, are then parameterised as a weighted average,
allowing for the smooth transition from the source-dominated to the background-dominated
AUF regime.

Finally, we test the application of the new, more accurate model for astrometric pertur-
bations to the issue of photometric contamination. Along with probabilities of cross-matches,
modelled using astrometric perturbations, the composite photometric catalogues provided by
the LSST:UK DAC should also provided information on the probability of relative flux bright-
ening of sources. We therefore perform tests on the extraction and recovery of blended objects,
showing that, at least qualitatively, it is reasonable to construct a completely analagous model
to astrometric perturbation when describing photometric contamination.

1 INTRODUCTION

One of the key concepts for this work package is the Astrometric
Uncertainty Function (AUF). Given the measured position of a star
the AUF is the probability density function describing the possible
positions of a star. Naively one may think this is a simple two-
dimensional Gaussian, but in practice it can have very broad wings
which are caused by faint, undetected stars which subtly shift the

measured position. For the faintest stars in any survey, assessing the
effect of even fainter stars requires knowledge of the number of stars
as a function of magnitude far below the survey limit. In Section 2
we discuss how this led to the first deliverable for this work package,
and how we side-stepped the need for it by considering the effects
of noise.

Whilst carrying out this work, however, we discovered that the

© 2020 The Authors



2 Tom J. Wilson and Tim Naylor

model of the AUF we had anticipated using was inadequate at faint
magnitudes, and so in Section 3 we describe an improved AUF for
background-dominated sources, implicitly encoding in its derived
quantities the effects of any blended objects unresolved by the data
reduction pipeline of the given survey.

Another extension toWP3.11.1we discovered during this work
was the need to ensure that the photometric component of theMonte
Carlo simulations used to model the effects of crowding were also
as accurate as possible. This would then allow us to report robust
statistical flux contaminations for the cross-matches reported, which
would likely be of interest to some users of the resultant merged
catalogue of objects. We additionally report here these photometric
considerations. Firstly, we consider the ∆m limit down to which
to model simulated blended objects within our Monte Carlo PSFs
to ensure that we capture, in all realisations, all appropriate flux
brightening within each object at the brightness of the central object
in Section 4. Additionally, in Section 5 we test the reporting of
these flux brightenings for objects whose properties were derived
with PSF-based least-squares fitting, but are not in the background-
dominated regime.

2 INCLUDING THE EFFECTS OF NOISE IN THE
SIMULATING OF PERTURBATION AUF
COMPONENTS

A pragmatic consideration we must make when considering the
cross-matching of LSST catalogues to external catalogues is that of
dynamic range. LSST is expected to reach 5-sigma depths of 27th
magnitude, which leads to a potential issue with Galactic source
count simulations. Previously, Wilson & Naylor (2018) considered
the TRILEGAL (Girardi et al. 2005) Galactic simulations for star
counts; however, the faintest stars modelled in these simulations
– at least, those publically available – is 32nd magnitude. Wilson
& Naylor (2018) also recommended simulating faint perturbers
up to 10 magnitudes fainter than the primary object, for source
astrometric precision arguments. Sources sufficiently faint are not
available through the TRILEGAL simulations, so another approach
is needed. Previous PSF simulations do not compare the noise in
the astrometric positions with the noise due to faint perturbers, an
exercise we undertake in the following section.

2.1 Noise effects on faint object astrometric perturbations

For these purposes we consider a simple system: a primary object,
of flux Fp , and a secondary object some distance d offset with flux
Fs (or f Fp , where f is the ratio of secondary-to-primary fluxes).
When calculating the perturbation component of the AUF, sources
are randomly simulated within a given PSF down to some flux ratio
and the perturbation position recorded in some way. However, this
was previously done in a noiseless environment, with flux-weighted
averages considered; the faint limit cutoff was therefore slightly
arbitrary. “Real” PSF fitting, however, is done in an environment
that contains noise – both from the physical sky objects, and the
background sky itself. Thus we can now consider the limit case
where the perturbing object cannot be seen below the noise in the
primary – or composite – object,

Fs ≥ B
√

Fp + S + f FpQ, (1)

where B is a factor, less than one, which dictates howmany sigmawe
need to consider a faint object to, S is the sky flux or source counts

within the PSF area in question, and Q is the fraction of the flux
from the secondary within the PSF area of the primary (typically
computed as the integral of a PSF centered on the secondary over
the primary PSF region). For our faint source cases f � 1 so we can
make the assumption that all of the noise comes from the primary
object or sky, and thus

Fs ≥ B
√

Fp + S = BσFp . (2)

Considering f ≡ Fs/Fp we can divide both sides by Fp to obtain

f ≥ B
σFp

Fp
= B SNR−1

p . (3)

Asmost photometric surveys are defined by their 5-sigma com-
pleteness limits, we need to focus on the signal-to-noise ratio (SNR)
of the primary object, requiringSNRp ≥ 5. Also considering a swap
from relative flux ratio to magnitude offset, ∆m = −2.5 log10( f ),
we can also select B = 0.05 – or sources at minimum a twentieth the
noise of the primary – as this gives ∆m = −2.5 log10(0.05/5) = 5.
Since these sources are at the faint limit of the survey, this implies
we only need to model the magnitude distribution 5 magnitudes
below the completeness limit, which our currently chosen Galatic
model allows.

A star 5 magnitudes brighter than the faint limit, assuming it
is still sky limited, will have SNRp = 500, for which we “only”
need to consider sources down to ∆m = 10, or again 5 magnitudes
below the faint limit. Thus this B = 0.05 provides a reasonable
range of faint perturbation flux limits as a function of primary flux.
It is these ∆m values, considering sources up to 5% the noise of the
central object when creating perturbation AUFs, that we use in the
following section. This value of B is incredibly conservative, and
could therefore be increased slightly without significant astrometric
effect, for future, even fainter surveys, such as WFIRST or any
“deep” LSST surveys with completeness limits beyond even 27th
magnitude.

We note here – but see Section 4 for more discussion – that this
is only the astrometric flux ratio limit, and we must also consider
the photometric limits on simulated contaminants.

3 DERIVING A MORE ACCURATE AUF IN THE SKY
BACKGROUND LIMITED CASE

Previously, the algorithm used byWilson & Naylor (2018) to create
fake Monte Carlo PSFs from which the average quantities affecting
the systematic offsets of the recorded positions of a given astrophys-
ical object used a relatively simple and naive flux-weighted average
scheme. The astrometric perturbation of a central source, caused
by fainter unresolved objects within a Rayleigh (1880) criterion of
1.185 full-width at half maximums (FWHMs)1 was simply given by
xpertub = (

∑
i xi fi)/(1 +

∑
i fi) where f is the relative flux between

the central object at (0, 0), defined as f = 1, and the faint perturber.
The photometric contamination was quoted as being

∑
i fi – i.e., it

was assumed that if there was 10% additional flux inside the system,
either as two sources with 5% relative flux or a single object a tenth
the brightness, the resultant photometric catalogue object was 1.1
times too bright.

This simple model should be true for the case of aperture pho-
tometry, where any extra flux is simply added to the total brightness

1 Although some surveys, due to non-Gaussian wings in the telescope PSF,
may have slightly larger unresolvable regions; WISE, for instance, cannot
resolve sources within 1.3FWHM – see Cutri et al. (2012), section 4.4c.

MNRAS 000, 1–10 (2020)
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of the central object when counting the flux within the aperture.
The first moment – used to derive the position of the source – will
result in essentially a flux-weighted average position, taking into
consideration edge cases where a bright object appears just inside
the aperture radius. However, if a more complicated model is used,
and sources are fit with a PSF to derive their flux and centroid posi-
tion then this assumption may not hold. Indeed, the case considered
by Wilson & Naylor (2018) is that of WISE, which has a robust PSF
fitting routine for its derived positions and flux measurements.

3.1 The log-likelihood PSF fitting method

3.1.1 Log-likelihood maximisation

Taking the slightly simplifying assumption that the PSF in question
is described by a Gaussian, we can state the fitting process as a min-
imisation problem, which can equally be thought of as a likelihood
maximisation problem. This problem, using a similar notation to
that given by Plewa & Sari (2018), equation 1, is

logL = −
1
2
× L

∞∫
−∞

[φ(r) + f φ(r − d) − (1 + ∆ f )φ(r − ∆d)]2 d2r,

(4)

where we are minimising the square of the differences between two
models, one with unity flux (up to a scaling factor of L) at the origin
and another with relative flux f at position vector d, and a single
model with brightening ∆ f at perturbation vector r − ∆d. Here φ is
the equation describing the circularly symmetric Gaussian PSF,

φ(r) = φ(r, σφ) =
1

2πσ2
φ

exp

(
−

1
2

r2

σ2
φ

)
. (5)

We can extend this easily to more than one perturber, now fitting
for N + 1 sources with a single composite PSF, given by

logL = −
1
2
× L

∞∫
−∞

[
φ(r) +

∑
i

fiφ(r − di) −

(1 + ∆ f )φ(r − ∆d)
]2

d2r .

(6)

Expanding the brackets results in six integrand terms, each
of which has a multiplicitive factor in front of the multiple of
two φ terms, with relative offsets (e.g., the second term would
be − 1

2 L
∑
i fiφ(r)φ(r − d)). These terms, integrated over all space,

are the convolution of the two Gaussians, offset by a given vector,
and thus each of the six integrals can be analytically computed as
six convolutions. As each φ term has the same uncertainty σφ , the
resultant Gaussian has an uncertainty of

√
2σφ , as Gaussian con-

volutions result in a Gaussian with a variance the sum of the two
composite variances. We therefore, for notation’s sake, define a new
term

ψ(r) = ψ(r, σψ) =
1

2πσ2
ψ

exp

(
−

1
2
|r|2

σ2
ψ

)
≡ φ(r,

√
2σφ) =

1
4πσ2

φ

exp

(
−

1
4
|r|2

σ2
φ

)
.

(7)

Only three of the resulting convolutions contain terms with ∆ f or

∆d in them – for example, the first term Lφ(r) multiplied by it-
self, after evaluating the convolution through the integral, becomes
− 1

2 L2ψ(0). The three terms which are multiplications of two dif-
ferent terms within the square brackets of equation 6 appear twice
and thus cancel the factor of a half in the definition of the log-
likelihood. Combining all terms, evaluating all convolutions, and
dropping constant terms, we therefore have

logL = L
[
(1 + ∆ f )ψ(∆d) + (1 + ∆ f )

∑
i

fiψ(di − ∆d) −

1
2
(1 + ∆ f )2ψ(0)

]
.

(8)

For small perturbations by very faint perturbers, we can derive
analytic expressions for∆ f and∆x (and∆y, to view sky coordinates
in a small enough area to consider the region as cartesian) by taking
derivatives with respect to those same values and setting to zero.
For ∆ f we have

∂logL
∂∆ f

= L
[
ψ(∆d) +

∑
i

fiψ(di − ∆d) − (1 + ∆ f )ψ(0)
]
= 0. (9)

Defining ψ′(x) ≡ ψ(x)/ψ(0), ∆ f can be solved for as

ψ′(∆d) +
∑
i

fiψ′(di − ∆d) − (1 + ∆ f ) = 0

∆ f = ψ′(∆d) − 1 +
∑
i

fiψ′(di − ∆d).
(10)

In the limit that |∆d|� 1, ψ′(∆d) → 1 and ψ′(di − ∆d) → ψ′(di)
and thus

∆ f '
∑
i

fiψ′(di) =
∑
i

fiexp

(
−

1
4
|di |2

σ2
ψ

)
, (11)

as quoted by Plewa & Sari (2018), equation 3. Similarly we can
differentiate with respect to one or other cartesian coordinate,

∂logL
∂∆x

= L
[
(1 + ∆ f )

∆x

2σ2
φ

ψ(∆d) −

(1 + ∆ f )
∑
i

fi
xi − ∆x

2σ2
φ

ψ(di − ∆d)

]
= 0.

(12)

Rearranging and using the previous definition of ψ′ we get

(1 + ∆ f )
∆x

2σ2
φ

ψ′(∆d) = (1 + ∆ f )
∑
i

fi
xi − ∆x

2σ2
φ

ψ′(di − ∆d)

∆x ψ′(∆d) =
∑
i

fi(xi − ∆x)ψ′(di − ∆d).
(13)

Again assuming |∆d|� 1 and thus ψ′(∆d) → 1, xi −∆x → xi , and
ψ′(di − ∆d) → ψ′(di), we have

∆x '
∑
i

fi∆xi ψ′(di) =
∑
i

fi xiexp

(
−

1
4
|di |2

σ2
ψ

)
. (14)

While these approximations of position perturbaton are valid
for small f , they are not applicable to cases of approximately equal-
brightness contaminants; we therefore require an approximation for
the perturbation of these bright objects in the sky background-
limited case. The general case for the increase in model flux, equa-
tion 10, can be used, however, once these perturbation coordinates
are computed. We therefore focus now on the positional effects.
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4 Tom J. Wilson and Tim Naylor

Figure 1. Parameterisation of composite flux-weighted and skew normal
model of single object perturbation, ∆x. Individual least-squares minimi-
sation parameters for skew normal, and critical cutoff for composite model
change (cf. equation 16), are shown in solid lines with both 15th order poly-
nomials overlaid in dash-dot lines. Polynomials do not fit f > 0.9975 as
parameterisation is poor at these fluxes.

3.1.2 Parameterising the background-dominated AUF
perturbation

Unfortunately it is not possible to analytically solve for equation 13.
We therefore here lay out an attempt to parameterise the solution
as accurately as possible, first splitting the composite solution into
one of the vector sum of single-component perturbation solutions,
cf. equation 14. For a single perturber, the offset ∆x, now a scalar
parameter, is a function of two components: first, the relative flux
f , and second, the perturber position x (and y). x is also considered
a scalar here – and always positive – but its implementation in the
computing of AUFs simply takes the absolute value of any given x
– positive or negative – to fit the parameterisation and matches the
sign of the resulting ∆x to that of x.

The paramaterisation of ∆x takes two forms: first, at small
relative fluxes, we keep the approximate form given by equation 14;
second, at larger relative fluxes, the perturbations are modelled as
a composite of flux-weighted averages at small source offsets and a
skew normal distribution at larger source offsets:

∆x(x, y, f ) =


f x exp
(
− 1

4
x2+y2

σ2
ψ

)
f < 0.15

Ω(x, f ) f ≥ 0.15,
(15)

where
Ω(x, f ) = Ω(x, f , σ, µ,α,T,rc)

=

{
x f /(1 + f ) x < rc or f > 0.9975
2 f T

σ λ
( x−µ
σ

)
Λ

(
α
x−µ
σ

)
x > rc and f ≤ 0.9975,

(16)

and λ(x) = 1√
2π

exp
(
− 1

2 x2
)
, Λ(x) =

x∫
−∞

λ(t) dt =

1
2

[
1 + erf

(
x√
x

)]
, rc is the critical offset at which perturbation stops

being modelled as flux-weighted, and σ, µ, α, and T are the scale,
location, shape and scaling parameters of the skew normal, respec-
tively. The skew normal distribution parameters and critical cutoff
are themselves parameterised as σ( f ), etc., and fit as two polyno-

Figure 2. Comparison between empirical and parameterised perturbations,
as a function of source offset and flux – represented by the colorscale, in ar-
bitrary scaling and steps from f ' 0.15 to f ' 0.1. Empirical perturbations
are shown in solid lines, with parameterisation shown as dashed lines.

mials (of 15th order; a tradeoff between accuracy and computation
cost), split by the break in σ at f = 0.54. The parameterisation
of skew normal parameters is given in Figure 1, and a compar-
ison between empirical and parameterised perturbations is given
in Figure 2. Note that extremely large relative fluxes give poorly
constrained skew normal parameters and thus we treat what are
essentially equal-brightness binary objects as being modelled as
flux-weighted averages at all offsets (as shown in equation 16 and
Figure 1). This gives maximum relative perturbations from the em-
pirical ∆x of < 8% (for the smallest relative fluxes not fit by the
approximate solution), tapering to maximal shifts of < 1% for the
brightest contaminants. In all cases the maximum absolute devia-
tion is less than 0.02σφ – that is, the offsets are always good to, at
worst, of order a percent of a PSF sigma.

To test the validity of the vector sum composite model at inter-
mediate fluxes, we then ran simulations of 300,000 realisations of a
central object plus an appropriate drawing of contaminants – based
on the TRILEGALnumber densities in theGalactic plane at roughly
l = 130, b = 0. The “proper” perturbation – the composite fitting,
equation 13 – was compared to the vector sum approximation, for
steps of WISE magnitude W1 11th through 17th. An example of the
improvement the parameterisation makes over the flux-weighted
centroid regime – where this background-dominated assumption
can be assumed to hold – can be seen in Figure 3, for W1 ' 15.5. It
can be seen that there is a much tighter distribution overall between
the new vector sum parameterisation and the full perturbation cal-
culation, as compared with the flux-weighted centroid previously
used. Additionally, we can compare the ∆ f computed using several
algorithms, as seen in Figure 4. The full ∆ f , from equation 10, as
fit via least-squares minimisation centroids agrees reasonably well
with both the vector sum background-dominated perturbation pa-
rameterisation and the flux-weighted centroid shifts – neither offset,
in Figure 3, was too wrong. However, Figure 4 shows how incorrect
the naive aperture sum flux increase is as a metric for background-
dominated PSF fit flux increases – the reported flux can be wrong by
as much as 50-100% of the original central source flux, for heavily
contaminated objects, such as those in WISE at 15.5th magnitude.
It is therefore crucial to understand the algorithms used to create
photometric catalogues and correctly apply the appropriate mod-
elling to ensure physically motivated reporting of any modelling of
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Figure 3. Comparison between the full background-dominated PSF fit cen-
troid shift computation, cf. equation 13, and the vector sum skew normal
parameterisation (equation 15), shown in black, and the flux-weighted cen-
troid algorithm previously used by Wilson & Naylor (2018), shown in red.

Figure 4. Comparison between the full background-dominated PSF fit flux
increase computation and various other algorithms. The difference between
the full PSF fit flux increase derived by equation 10 and the increase com-
puted using the perturbations calculated using the approximation given in
equation 15 is shown in black; the background-dominated case PSF flux
increase using the flux-weighted perturbation centroids is shown in red; and
the naive aperture sum flux increase (

∑
i fi ) is shown in blue.

flux contamination due to blended objects, such as that performed
by Wilson & Naylor (2018).

3.2 Modelling the AUF at all signal-to-noise ratios

3.2.1 Outline solution

Now that we have a model for fitting the centroid perturbation shifts
in the limit of background-dominated, approximately constant noise
PSF fit objects, we can apply a further parameterisation to model
the AUF at all signal-to-noise ratios. To create a probability density
function describing the likelihood that two objects, detected in two
photometric catalogues, are detections of the same object when one

catalogue is subject to crowding, one first needs to derive the likely
systematic perturbations of the first object due to said crowding. To
achieve this, one must – as described in more detail by Wilson &
Naylor (2018) – simulate a PSF, drawing – based on the density of
sources as a function of magnitude fainter than the central object –
realisations of the perturbers within the bright object, and deriving
the centroid shift of the object caused by these blending objects.
This is then repeated a large number of times to create a sample of
systematic centroid perturbations and corresponding flux contam-
ination levels for a source of given Galactic coordinates (affecting
the overall density of sources and extinction reddening, etc.), local
source density (to “smooth out” the simulated TRILEGAL source
densities), and central object flux. This perturbation AUF compo-
nent is then convolved with the statistical AUF component, the
original – and often assumed only – source of position uncertainty
caused by noise in the detection image.

3.2.2 Testing with real data

A good dataset to test howwell this will work for faint LSST sources
is WISE, because although WISE is a relatively shallow survey, its
large point-spread function means that it suffers similar crowding
to LSST. Wilson & Naylor (2018) previously used a flux-weighted
centroid algorithm for computing the AUFs of sources, motivated
primarily by relatively bright objects (W1'13) in the WISE survey.
However, this model is clearly superceded by the physically moti-
vated fitting algorithm laid out in Section 3.1.1; this improvement
can be seen in Figure 5, where the background-dominated PSF cen-
troiding algorithm (dashed line) fits the Gaia-WISE cross-matches
of W1'17 much better than the flux-weighted centroiding (solid
line)2. The exact opposite is true at W1'12 in Figure 6, where the
flux-weighted centroid calculated AUF is now the better fit.

We parameterise the “hand-off” between the two noise regimes
– star dominated and background sky dominated – with a simple
linear slope. At each WISE magnitude, 11th through 17th, we fit
the least-squares minimisation of the weighted average of the two
AUFs to the data, as

y = H AUFfw + (1 − H)AUFbd (17)

for “flux-weighted” and “background-dominated” AUFs. We then
parameterise H as a function of magnitude as a linear slope, capped
at 0 ≤ H ≤ 1. The resulting composite AUFs are seen in Figures 5
and 6 as solid red lines, but also an “intermediate” SNR regime at
W1 ' 14.5 in Figure 7, where it can be seen that neither AUF can
explain the data by itself, but a simple weighted average of the two
explains the cross-matches with high accuracy.

We initially explored the possibility that the mis-match be-
tween the physically motivated AUFs and the cross-matches was
due to the combining of multiple “groups” of data into a single
dataset. However, in all cases the WISE data were drawn from a
consistent SNR regime, whether measured by pure SNR, back-
ground flux counts, or star-to-background flux ratio. Thus, unable

2 The construction of these diagrams is described in detail by Wilson &
Naylor (2018). One can compare the WISE measured position of a source
with its true position by cross-matching it withGaia because theGaia uncer-
tainties are so small. Hence for a large sample of Gaia-WISE cross-matches
the distribution of actual WISE positions with respect to the measured one
is given by the density of Gaia countarparts at a given radius. This is the
error bars marked in these diagrams.
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Figure 5.Model AUFs compared with Gaia-WISE cross-matches ofW1 '
17 (shown as black errorbars). Solid black line is AUF as derived using the
Wilson & Naylor (2018) flux-weighted centroid calculation, and the dashed
black line is the new, background-dominated PSF derived centroid shift laid
out in Section 3.1.1. Red line is parameterisation of weighted average of two
PDFs.

Figure 6.Model AUFs compared with Gaia-WISE cross-matches ofW1 '
12 (shown as black errorbars). Solid black line is AUF as derived using the
Wilson & Naylor (2018) flux-weighted centroid calculation, and the dashed
black line is the new, background-dominated PSF derived centroid shift laid
out in Section 3.1.1. Red line is parameterisation of weighted average of two
PDFs. Note that the black line in this figure is entirely beneath the red line
as the weighted average AUF is entirely weighted towards the flux-weighted
AUF (H = 1, equation 17).

to explain the composite nature of the cross-match distributions
as physically different groups of objects incorrectly merged into a
single distribution, the most likely explanation is simply that those
sources at intermediate brightnesses, W1 ' 14.5 or thereabouts,
are in a transition from star- to background-dominated noise. This
hypothesis bears out under examination of the star-to-sky flux ratio,
which is of order 10 at W1 = 12, of order 2-3 at W1 = 14.5, and
less than 1 by W1 = 17.

Figure 7.Model AUFs compared with Gaia-WISE cross-matches ofW1 '
12 (shown as black errorbars). Solid black line is AUF as derived using the
Wilson & Naylor (2018) flux-weighted centroid calculation, and the dashed
black line is the new, background-dominated PSF derived centroid shift laid
out in Section 3.1.1. Red line is parameterisation of weighted average of two
PDFs.

4 THE PHOTOMETRIC LIMIT OF THE
PERTURBATION AUF

The original algorithm for deriving the additional components of
the AUF – aside from the original, intrinsic, noise-based Gaussian
component – used by Wilson & Naylor (2018) called for a ∆m = 10
magnitude limit for the perturbation-specific aspect. In this case,
this limit was a simple one, based roughly on perturbations using
a flux-weighted centroid, being that of the largest “small” offset
caused by this faint object. For ∆m = 10 we have f = 0.0001 – f
being the relative flux ratio between perturber and central source –
and flux-weighted perturbations at most of order 0.001", an order of
magnitude below the centroiding precision of bright WISE objects.

However, as discussed in Section 2, we can now use a
magnitude-based ∆m cut, based on the individual SNR of an object,
providing a dynamic ∆m limit. As this calculation only took into
account the effects on the astrometry of the bright, central object we
additionally need to consider whether the ∆m limit would result in
a complete evaluation of the flux contamination of the objects. For
this, we can turn to the number of objects simulated within a given
Monte Carlo realisation of the PSF.

4.1 PSF Realisation Derivation

As described by Wilson & Naylor (2018), the simulations for cre-
ating the statistical distribution of perturbations of a bright source’s
position – and contamination of its flux – involve the drawing of ob-
jects and placing them randomly near to the primary source.We then
assume that, on a statistical level, all of the flux that will affect the
contamination level quoted has been simulated if we define our ∆m
such that essentially all simulations contain at least one perturber.
To compute this, we again assume our simulations are modelled as
per Wilson & Naylor (2018), in which small magnitude offsets are
stepped through for secondary perturbers. In each small bin mi to
mi + dm there is a given number density of objects (either a galaxy
source rate or TRILEGAL Galaxy star count rate, e.g., cf. figure
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5 of Wilson & Naylor 2018), converted to an expected number of
source within an area of the PSF.

From this expectation count λi – for the ith bin – a given
source number is drawn from a Poissonian distribution. We can
therefore compute the expected number of sources, and cumulative
distribution function (CDF), for the total number of sources down
to a given ∆m, given by the convolution of each individual Poisso-
nian distribution for each small magnitude bin. Using the notation∑n
i=1 Xi = Y , where Xi and Y are n independent random variables

and the resultant convolution distribution respectively, we get
n∑
i=1

Poisson(λi) = Poisson

(
n∑
i=1

λi

)
≡ Poisson(λ), (18)

where

Poisson(λ) = P(X = k; λ) =
λk exp(−λ)

k!
(19)

with k the number of objects drawn. Thus the sum of n values,
drawn from Poissonian distributions is, effectively, itself a drawing
from a Poissonian distribution with the expectation value the sum
of each individual expectation values.

We wish to find the ∆m to simulate down to – or, now, the
number of small magnitude bins we need to drawn from – at which
we get some small fraction of realisations with zero extra sources
drawn.Nowwe can use a Poissonian distributionwith its expectation
value the sum of each individual expectation value, and draw the
CDF for no objects,

P(X ≤ k; λ) =
Γ(bk + 1c, λ)
bkc!

≡ exp(−λ)
bk c∑
i=0

λi

i!
, (20)

where bkc is the “floor” of k (i.e., the largest integer no larger than
k), and thus our given probability, for zero objects, is

P(X ≤ 0; λ) = Γ(1, λ) ≡ exp(−λ). (21)

4.2 WISE Simulations

We need to calculate P(X ≤ 0; λ) = y, where y is some small
fraction, here given as y = 0.01 – a 1% chance of realising a
PSF containing no objects. Thus, for a given source density of
potential contaminating sources, we can compute the photometric
contamination limit, shown, along with the original astrometric
limit, in Figure 8. This is simply the sum of all individual magnitude
bin λi values (the number density of objects times the bin width
times the PSF area) below the m of the bright, central object until
P(X ≤ 0; λ) ≤ 0.01. For k = 0 and y = 0.01 this simplifies slightly
to asking the ∆m bin at which λ ≥ − ln(0.01) ' 4.6.

The importance of this calculation is highlighted in Figures
9 and 10. These figures show the cumulative distribution of the
derived flux contaminations of a sample of WISE objects at two
magnitudes – one faint, one bright. Plotted are the∆m = 10 previous
limit, for reference, along with a ∆m = 15 case, representing a
“complete” limit at all brightnesses. Also plotted are the astrometric
∆m derived previously, and the new photometric limit.

It can be seen in Figure 9 that neither the astrometric limit,
nor the original ∆m, capture the tail in the distribution of fluxes
from sources of W1 = 9. These objects are bright, and thus not
subject to significant crowding at relative flux ratios that contribute
to the overall quoted flux; however, the astrometric limit causes
two thirds of cases to be quoted as having zero additional flux.
While the individual sources are at ∆ f ' 0.001, we can ensure that

8 10 12 14 16 18
W1 / mag

4

6

8

10

12

M
ax

p
er

tu
rb

at
io

n
m

ag
off

se
t

Astrometric ∆m

Photometric ∆m

Figure 8.Magnitude offsets for considering blended objects to, for both as-
trometric and photometric considerations, forWISE sources at l = 130, b =
0. The ∆m for astrometric completeness – the limit at which the secondary
object is 5% the noise of the primary object – is shown in solid black. The
photometric magnitude offset – the magnitude offset down to which sources
must be drawn for 99% of realisations to contain at least one source – is
shown in dashed black. The red line shows the maximum of the two; and the
dash-dot black line shows ∆m = 5, important for LSST using TRILEGAL
simulations.

our distribution of flux brightenings is robust across all statistics
by increasing ∆m to 10 or even 12, with little computational cost.
This then ensures we track our ∆ f flux brightenings down to 10−5,
providing the full statistical distribution of potential contamination
levels, which could be of use.

Figure 10 shows a different story, however. At these fainter
magnitudes, the photometric limit – defined as the point at which
we draw zero sources no more than 1% of the time – is achieved
much quicker, as these sources are much more subject to crowding.
Here, the astrometric limit begins to dominate, and we can stop
worrying about the photometry, as it can be assumed to be complete
at the astrometric limit. Thus, as Figure 8 shows, the photometric
limit matters more at bright magnitudes than the astrometric limit,
as shown by the handoff between the two at W1 ' 14.

We can therefore now derive a ∆m which ensures that both the
astrometric perturbations and photometric contamination of sim-
ulated objects are as accurate as possible. This then allows for
robust secondary parameters, such as flux brightening of individual
sources subject to crowding in a given photometric catalogue, to
be quoted along with likely cross-matches to secondary catalogues.
In addition, this method can adjust the acceptable fraction of PSF
realisations with zero perturbers y, analagous to the B = 0.05 result
for astrometric SNR considerations, allowing for flexibility in the
derivation of the photometric ∆m.

5 FLUX CONTAMINATION COMPUTATIONS AT ALL
SIGNAL-TO-NOISE RATIOS

Previously, we derived a new method for computing the astromet-
ric perturbations of sources in the background-dominated, PSF-
fit regime, applicable to faint LSST objects. This new algorithm
was combined with the previously used flux-weighted centroids in
a magnitude-based weighted average scheme (see Figure 7, e.g.).
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Figure 9. Cumulative distributions of derived flux contaminations from
Monte Carlo simulations of blended sources within PSFs, assuming a WISE
source ofW1 = 9. Various ∆m limits are shown: the previously computed
astrometric limit (black line), 15 (red line), the photometric limit (blue line),
and 10 (green line). Additionally, the flux contaminations from a simple
flux-weighted centroid (solid lines) and the log-likelihood maximisation
method (dashed lines) are shown. Vertical lines show the lower limit on f ,
based on f = −2.5 log∆m. CDFs include sources for which zero objects
were realised, which is why some CDFs do not begin at zero (i.e., if 40% of
objects are “pure”, the CDF would start at 0.4).

Figure 10. Cumulative distributions of derived flux contaminations from
Monte Carlo simulations of blended sources within PSFs, assuming a WISE
source ofW1 = 15. Colours and line styles are the same as in Figure 9.

However, this only considered the astrometric modelling, and there
is an outstanding question of how to handle the flux contamination
of PSF-fit sources at bright magnitudes. We detail here a test into
this question, using simulated test image cutouts with realisticWISE
counts and noise.

5.1 Simulating Crowded PSFs

For a series of W1 magnitudes, we create small representative im-
ages of a single PSF, and add extra sources, representing simulated

perturbers. The PSF used is the WISE PSF3, integrated over a pixel,
with image cutouts being 13x13 pixels (roughly two 3σφ radii,
to catch the entirety of a perturber placed at its maximum off-
set). This is implemented using a Photutils EPSFModel, fit via
Astropy’s LevMarLSQFitter. We calculate the “flux,” or, more
specifically, the DN counts, of an object by N = 10−(m−m0)/2.5,
where m0 = 20.5 is the instrumental zero point of the W1 filter.
The background is chosen to be representative of the same region
simulated previously – l = 130, b = 0 – as the average of the quoted
DNs of WISE objects in the region, B = 23 (again, in DN). It is
subtracted from the image once the noise has been simulated. Noise
in the image is simulated by drawing each pixel from a Poissonian
distribution, with a multiplicative factor of g = 3.2e−/DN, the gain
of the system; this is subsequently removed again once the noise is
simulated. The uncertainty of each pixel is a combination of several
sources: the Poissonian noise from the sources and background (cor-
recting for gain), read noise of 3.1DN, the PSF uncertainty array (as
provided with the WISE PSF), a flatfield uncertainty of 0.15% flux,
and a typical quoted “confusion error” of 0.3DN. These uncertain-
ties are combined quadratically, and the inverse standard deviation
is provided as a weight to LevMarLSQFitter. The main source is
also randomly placed within the central pixel, to simulate various
pixel phases, and then realisations of the given number density of
objects, from the TRILEGAL simulation used previously, are drawn
and placed.

The resulting composite, blended object is then fit with a single
PSF, from random starting position and flux; the build up of 50000
realisations is then flipped into a probability density function (PDF)
of perturbations and flux contaminations. We also simulate just
the central object, with zero contaminants, and fit the resulting
distribution of recorded offsets – in both position and flux – to
derive statistical, “pure” Gaussian uncertainties. We then analysed
the resultant distribution of perturbed source positional offsets and
flux brightenings.

5.2 Bright, PSF-Fit Source Contaminations

The astrometric uncertainty functions (AUFs) follow a very similar
shape to those seen in the Gaia-WISE cross-matches used above
and by Wilson & Naylor (2018). We cannot directly compare the
simulation to the AUFs seen in the Gaia-WISE data, unfortunately,
as we cannot simulate several systematic astrometric effects, such as
pixel-to-coordinate transformations. We can compare, however, the
ensemble WISE astrometric uncertainties at each magnitude slice to
a quadrature sum of the derived “pure” Gaussian uncertainty from
the simulations and a systematic uncertainty. This gives good agree-
ment, with a systematic uncertainty of 0.035", which is a reasonable
“missing” uncertainty, suggesting our simulation is robust as an ex-
periment. A comparison of the statistical distribution of perturba-
tions (the perturbation components of the AUF), convolvedwith this
“representative” WISE astrometric uncertainty, shows good agree-
ment with the cross-match offsets in the extreme limits of flux. Such
an example can be seen in Figure 11, comparing the “flux-weighted”
AUF with the Gaia-WISE cross-matches shown. This suggests our
realisations of perturbing objects are accurate, and thus useful for
evaluating the photometric contamination.

The overall trend of H with magnitude for the simulated per-
turbed positions agrees qualitatively with that seen in the data-
driven model; H is larger at bright fluxes, decreasing to zero in the

3 Cutri et al. (2012), 4.4c
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Figure 11. The distribution of perturbations of central object by blended
sources. Shown in black are the offsets from “true” of simulated sources,
fit via PSF photometry; overplotted in red and green dashed lines are the
flux-weighted centroid and background-dominated AUFs, convolved with
the intrinsic Gaussian AUF component. Faint black and red lines show
simulated “pure” positional offsets, used to derive the intrinsic Gaussian
uncertainty, and the intrinsic Gaussian, respectively. The blue line shows
the H-weighted AUF; and the orange errorbars show typical Gaia-WISE
cross-matches for comparison.
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Figure 12. Fit parameters as a function of magnitude for testW1 PSF sim-
ulations. Shown are the weighting H between flux-weighted centroid (or
aperture photometry flux) and background-dominated perturbations (con-
taminations) for the AUF (and PCF) in black (and red). Also shown, in blue,
is the constant of proportionality between astrometry and photometry, for
deriving the relative photometric uncertainty of a given source, offset by√

2 − 1.

background-dominated case. However, we find that H does not tend
to one (shown in Figure 11), as it does with the full Gaia-WISE
cross-match AUF fits, suggesting some discrepancy in our fits ver-
sus the “full” data – an obvious issue being the lack of multi-band
fitting. On the other hand, the “H” for the photometric contami-
nation function (PCF; the statistical distribution of ∆ f for a given
theoretical source) does tend roughly to one at bright magnitudes;
the discrepancy here, as with the simulated AUF H, is the magni-

Figure 13. Distribution of photometric contaminations of central object
by blended sources. The black line shows the relative flux brightenings of
simulated sources, fit via PSF photometry. Faint black and red lines show
simulated the “pure”∆ f distribution, and its corresponding best fit Gaussian,
respectively. The red and green lines show the aperture photometry and
background-dominated, PSF-fit flux brightening models, convolved with
the “pure” Gaussian noise component, respectively. The dashed and dotted
lines (for the red/green lines) show the limits where “fac”, the constant of
proportionality between relative astrometric and photometric uncertainties,
are 1 (no background) and

√
2 (background-dominated), respectively. The

blue line shows the H-weighted PCF, with 1 ≤ fac ≤
√

2.

tude at which H starts to drop. Both H trends for the full magnitude
range are shown in Figure 12; see Figure 13 for an example of a
PCF fit.

Overall then, there is reasonable evidence from these sim-
ulations that we can derive a completely analagous function for
photometry to that used to compute the astrometric component,
the PCF (the photometric “AUF”). We should be able to param-
eterise the contamination component of the PCF as a piece-meal
weighted-average of an aperture photometry model at high SNRs
and themodel previously derived for background-dominated PSF-fit
sources. This can then be convolved with a (now one-dimensional)
statistical uncertainty component – albeit with the extra proportion-
ality constant linking astrometric and photometric ratios (see Figure
12, and King 1983 for more details) – to provide a full distribution
of potential ∆ f brightenings.

6 EXTENSIONS

While the above parameterisation of themagnitude offsets necessary
for inclusion in the AUF model (Section 2) and the improved model
for calculating centroid offsets for PSF fit sources in background-
dominated noise regimes (Section 3) are vital for the correct mod-
eling of the effects of blended sources on the astrometry of LSST
sources, and the improvements to the photometric modelling side
in Sections 4 and 5 are also important, this does not represent an
exhaustive modelling of all sources of uncertainty in the derived
parameters.

A significant unknown at present is how to model the effects
of deblending of objects – active deblending is where additional
sources are included simultaneously in the least-squares minimisa-
tion of a PSF fit source. The effects of these additional sources are
not included in the AUF – where they would have perturbed the

MNRAS 000, 1–10 (2020)
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primary by some ∆x they are themselves extracted together with
the primary object so no longer do so – but they also have more
subtle effects not currently taken into account. Indeed, in the case
of bright WISE objects, we find that the cross-matches with Gaia
sources results in a larger average offset for sources which have
had active deblending applied than those for which there is no at-
tempt to deblend perturbers. However, only of order 15% of WISE
sources have active deblending applied to them, and this additional
systematic offset from the more precise Gaia objects is negligible
by W1 ' 14.5. Hence we ignore the effects of active deblending at
present.

We also stress here that this work is not quite finished, as
we have prioritised WP Deliverable 3.11.2 (and 3.11.3; see the
six month plan April-October 2020 for more details) due to begin
May/June 2020 over finishing theseminor aspects ofWPdeliverable
3.11.1. This report provides the qualitative conclusions to the case
of the parameterisation of the flux contamination suffered by an
object subject to blending at all SNRs, but will require further
follow up to smooth over a few loose threads and create the eventual
implementation for the final deliverable of the project. We currently
assume that this parameterisation of the smooth transition from
high to low SNRs through an intermediate weighted average AUF
will also be applied to the PCF with the same weighting. A more
accurate model for the flux brightening an object is subject to in
its crowded field would be a bonus, but as this should always be
treated with caution, regardless of the algorithm used, is of lower
importance to the project.

7 CONCLUSION

In this report we have laid out an updated algorithm for the descrip-
tion of background-dominated sources for which blended object
perturbations need to be accounted for. This new AUF, when com-
bined with a previous algorithm applicable to the case of bright
objects, better describes the separations of Gaia and WISE matches
in the Galactic plane than previous attempts alone. When combined
with a faint source cutoff motivated by the signal-to-noise ratio of
the star, the new modelling gives a more accurate understanding of
the cross-matches of sources at the faint end of the LSST dynamic
range This is crucial as crowding becomes increasingly important
at such depths, while also allowing us to use previously selected
Galactic simulations, avoiding issues with simulation faint magni-
tude limits. We also detailed two improvements to the photometric
description of blended sources: the photometric simulation limit,
and the photometric contamination model, which will allow us to
report more detailed, accurate, and precise information on the levels
of flux contamination suffered by objects subject to blending than
previously available.
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