
Copyright LSST:UK Consortium 2017

Using Jupyter Notebooks As An
Analysis Platform for LSST

Work Package 2 (Data Access Centre)

Submission date 20/AUG/2019

Version 1.0

Status Published

Author(s) inc.
institutional affiliation Gareth Francis (Edinburgh)

Reviewer(s) Bob Mann (Edinburgh)

George Beckett (Edinburgh)

Dissemination level

Public

Project Acronym LUSC-A

Project Title UK Involvement in the Large Synoptic Survey Telescope

Document Number LUSC-A-10

2

Version History
Version Date Comments, Changes, Status Authors, contributors,

reviewers

0.1 25/06/19 First draft Gareth Francis

0.2 28/06/19 George Beckett

0.3 1/07/19 Added section 4 and executive
summary, minor changes elsewhere.

Gareth Francis

0.4 3/7/19 Reformatted references. Added
glossary.

Gareth Francis

0.5 22/7/19 George Beckett

0.6 20/8/19 Added architecture diagram,
requirements list as annex, rewrote
section 5.2.2.

Gareth Francis

1.0 20/8/19 First version released George Beckett

3

Table of Contents

VERSION HISTORY .. 2

1 EXECUTIVE SUMMARY ... 4

2 INTRODUCTION ... 5

2.1 BACKGROUND ... 5
2.2 GLOSSARY OF ACRONYMS .. 6

3 DEPLOYMENT .. 7

3.1 REQUIRED RESOURCES .. 7
3.2 DEPLOYMENT PROCESS ... 8

3.2.1 Kubernetes .. 8
3.2.2 JupyterHub .. 8
3.2.3 Docker Images .. 8
3.2.4 HTTP Proxy .. 9
3.2.5 AAI .. 9
3.2.6 Accounting .. 9
3.2.7 Logging ... 9
3.2.8 Development Instance .. 9

4 CURRENT STATUS .. 10

4.1 DEVELOPMENT PROGRESS ... 10
4.2 OPERATIONAL STATUS .. 10

5 FUTURE DEVELOPMENTS ... 11

5.1 DEPLOYMENT .. 11
5.1.1 Magnum ... 11
5.1.2 Elasticity .. 11
5.1.3 Automation ... 11

5.2 FEATURES ... 11
5.2.1 Integration with DAC services ... 11
5.2.2 Additional supporting services .. 11
Version Control .. 11
Data Storage .. 12
Documentation .. 12
Custom Server Images ... 12

6 REFERENCES .. 13

ANNEX A. REQUIREMENTS .. 14

 Index of Tables

Table 1 VM instance requirements.. 7

Table 2 Storage requirements ... 8

4

1 Executive Summary
The LSST:UK Project is investigating Jupyter Notebooks[1] as a convenient and cost-
effective way to provide an environment through which astronomers can access and
analyse LSST data, as part of a wider suite of services called the Data Access Centre
(DAC). In order to manage this environment we are deploying a JupyterHub [2] service
providing pre-configured Jupyter environments to users on an on-demand basis.

An initial deployment has been made using the SFTC Cloud infrastructure [3] provided
through IRIS [4]. The service is operational and in use by a small number of early access
users.

JupyterHub is deployed to a Kubernetes [5] cluster, which we currently self-manage, but
hope in future to be able to provision as a native OpenStack resource once this
functionality is made available by the cloud provider.

AAI functionality is provided through the EGI Check-in service [6]. This means that users
can log in using their own institutional credentials and allows DAC administrators to
manage them using group management tools available in EGI Check-in.

In addition to the JupyterHub service itself, we also provision a number of supporting
services such as remote logging, accounting and a local Docker repository. We provide
a customised Jupyter environment – in the future likely a choice of environments – that
is pre-configured with various standard astronomical libraries and software and database
access settings. Using this environment a user can easily access the ZTF database in
the current prototype DAC.

At present most of what we identify as the essential requirements for the service are met
and the environment is usable. There is significant future work to be done in a number
of areas, in particular around integration with other DAC services such as user-writable
database access, access to additional data resources and the ability to offload
processing to external clusters.

5

2 Introduction

2.1 Background

LSST data will be made available to users through several different routes, as part of a
suite of services called the Data Access Centre (DAC). At one extreme, a web portal will
provide easy, interactive access to standard (and lightweight) astronomy analysis
functions for occasionally users. While, at the other extreme, data-intensive campaigns
will be supported with bespoke workflows running in batch-processing mode on HPC
resources, developed and implemented by groups of researchers—e.g. from one of the
LSST Science Collaborations.

However, there is a significant demand for a level of access somewhere in between
these two extremes, where an astronomer can interactively develop bespoke analysis
workflows (analogous of scripts), with significant flexibility though only modest computing
demands (e.g. a few hundred core hours). The LSST Project is investigating Jupyter
Notebooks [1] as a convenient and cost-effective way to provide such an environment,
with relevant software, to meet a significant portion of the envisaged use cases for data
analysis.

Jupyter Notebooks are interactive documents that can contain code, equations,
visualisations and text. They are becoming very popular amongst astronomers (and
others) as a convenient way to explore and analyse data. They are easy to get
started and yet scalable to large computations; Jupyter notebooks can be documented
and shared, used as tutorials, and promote reproducible science. Once a researcher has
learned a technique by reading the documentation and code contained in an existing
notebook, that code can be executed and the results visualised, directly in the notebook.
The code can then be modified and re-run with different data, different algorithms,
different purposes, opening up a wide scope for experimentation with minimal start-up
cost.

There are several potential options for managing notebooks in a multiuser environment,
on-demand. JupyterHub is a popular option, at the time of writing, used in peer activities
within the academic community (such as University of Edinburgh Noteable Service),
which in turn are able to advise us on setup and confirmation. As the project website [2]
describes it:

JupyterHub brings the power of notebooks to groups of users. It gives users
access to computational environments and resources without burdening the
users with installation and maintenance tasks. Users - including students,
researchers, and data scientists - can get their work done in their own
workspaces on shared resources which can be managed efficiently by system
administrators.

JupyterHub runs in the cloud or on your own hardware, and makes it possible to
serve a pre-configured data science environment to any user in the world. It is
customizable and scalable, and is suitable for small and large teams, academic
courses, and large-scale infrastructure.

Given this, we have elected to adopt JupyterHub for the experiments described herein.

6

2.2 Glossary of Acronyms

AAI Authentication and Authorisation Infrastructure

DAC Data Access Centre

GUI Graphical User Interface

HTTP Hypertext Transfer Protocol

K8s Kubernetes

LSST Large Synoptic Survey Telescope

STFC Science and Technology Facilities Council

VM Virtual Machine

ZTF Zwicky Transient Facility

7

3 Deployment
An initial deployment of the JupyterHub service has been made to the SFTC Cloud [3].
This is an OpenStack Cloud resource operated by the Rutherford Appleton Laboratory
as part of the IRIS e-Infrastructure [4].

3.1 Required Resources

The following summarises the OpenStack resources used at present:

Purpose CPU/Memory Disk Public IP

Admin 1/1GB 50GB Yes

K8s Head node 2/4GB 50GB No

K8s Worker nodes 16/32GB 50GB No

HTTP Proxy 1/1GB 12GB Yes

Accounting 1/1GB 25GB No

Logging 2/4GB 50GB No

Development K8s 2/4GB 25GB No

Table 1: VM instance requirements

The purpose of each VM is described in more detail in section 3.2 below, but briefly: the
“admin” node runs internal services such as Rancher and the Docker registry; the head
and worker nodes comprise the Kubernetes cluster; the roles of the HTTP proxy,
accounting and logging VMs are self-explanatory; and the development VM provides a
minimal additional Kubernetes cluster for development and testing purposes. The
architecture is shown in outline in Figure 1 below.

Figure 1: Outline Architecture

K u b e r n e t e s

A d m i n

R a n c h e r

D o c k e r

R e g i s t r y

H e a d

W o r k e r s

H T T P
 P r o x y

L o g g i n g
 A c c o u n t i n g

I n t e r n e t

P u b l i c
 N e t w o r k

P r i v a t e
 N e t w o r k

8

The number of worker nodes (currently one) is expected to grow, and potentially shrink,
with demand. The sizing of the worker nodes is somewhat flexible depending on the
underlying resources available, although larger instances here are helpful, both in terms
of efficiency and by enabling us to offer larger, more capable notebook servers if
required. The other VMs are simply the minimum size given their memory requirements.

Purpose Description Current Usage

Fixed overhead Not expected to grow significantly 212GB

Variable overhead Scales with number of worker nodes 50GB

User storage 10GB per user 130GB

Table 2: Storage requirements

3.2 Deployment Process

3.2.1 Kubernetes

We wish to deploy the JupyterHub service to a Kubernetes (K8s) cluster, but this is not
yet widely available in IRIS as a native resource. We therefore provision the required
VMs – one for administration, one as a K8s head node and as many worker nodes as
we require based on the anticipated workload – then use the Rancher tool[7] to deploy
the K8s cluster.

This is currently done using the GUI interface. Although this is not ideal in terms of
replicability compared with a more scripted approach, it is considered acceptable since
the only major configuration consists of setting the OpenStack cloud parameters.
Furthermore, as we do not anticipate continuing to use Rancher once K8s clusters are
available as native OpenStack resources (though e.g. Magnum) this is not considered a
useful place to invest further effort.

Once the K8s cluster is deployed, a storage driver must be configured in order to allow
K8s to create storage volumes on demand. We can then install Helm (an application
deployment and management system that runs on top of K8s) in order to manage the
deployment of JupyterHub itself.

3.2.2 JupyterHub

The JupyterHub service is deployed using Helm (a more detailed description of the
process can be found at https://zero-to-jupyterhub.readthedocs.io/en/latest/setup-
jupyterhub.html). The Helm charts have not required customisation (other than that which
can be achieved using the standard configuration file); they can be found at
https://jupyterhub.github.io/helm-chart/.

The configuration used can be found in the project GitHub repository
(https://github.com/lsst-uk/jhub-test) under helm/jhub.

3.2.3 Docker Images

Containers (specifically Docker containers) are used both for the management services
that make up the Jupyter Notebook offering, and for the user-spawned notebooks that
run within this.

Two slightly customised Docker images are used, one for the hub itself and one for the
notebook server. More custom notebook servers will likely be added in future. The
Docker files are available in the git repository.

https://zero-to-jupyterhub.readthedocs.io/en/latest/setup-jupyterhub.html
https://zero-to-jupyterhub.readthedocs.io/en/latest/setup-jupyterhub.html
https://jupyterhub.github.io/helm-chart/
https://github.com/lsst-uk/jhub-test

9

A local Docker registry running on the admin VM is used to serve these.

3.2.4 HTTP Proxy

While in principle a Kubernetes cluster can manage its own proxy server(s), our
experience so far is that getting this working in an OpenStack environment is non-trivial
and the resulting configuration fragile and not readily portable across different
infrastructures. We therefore use an external proxy server (running Nginx) to manage
this.

3.2.5 AAI

Identity and authentication is provided using EGI Check-in [6]. This allows users to log
in using their own institutional credentials. We handle authorization using groups that we
can define as required.

Technically the JupyterHub service acts as an OpenID Connect client. The configuration
for this is all contained in the Helm configuration file.

3.2.6 Accounting

Accounting (at the user level) is handled by two components.

A custom lightweight service tracks users and running notebook servers. It does this
using a REST interface which is called by the JupyterHub service when relevant events
occur (user log in, spawning a new server, shutting down a server). Details of running
servers are stored in a database and periodically a log file of completed sessions and
their resource usage is written.

This log is ingested by Open XDMoD[8]. It can then be viewed and queried in much the
same way as any other HPC resource.

Currently only CPU allocation is tracked in this way, although memory and storage could
potentially be added if required.

The groups defined in EGI Check-in can be used by the accounting system. Where a
user is a member of multiple groups they must select which group a session should be
accounted to when spawning their server.

3.2.7 Logging

In order to facilitate log retention and analysis we use Elastic Stack[9]. This runs in a
separate VM instance.

Since logs in Docker containers are necessarily somewhat ephemeral, FileBeat is used
to export (a subset of) logs to the ElasticSearch database via Logstash, along with logs
from the HTTP proxy. These can be visualised and queried using Kibana.

This system is somewhat experimental at present as the requirements regarding what
should be logged, how long logs should be retained for and what analysis, if any, is
required are all still in need of clarification.

3.2.8 Development Instance

In addition to the above, we have a second (minimal) K8s cluster configured as a test
and development environment.

10

4 Current Status

4.1 Development Progress

The requirements for the Jupyter service are documented at https://lsst-
uk.atlassian.net/wiki/spaces/LUSC/pages/662863877/Jupyter+Notebook+Service+Req
uirements+for. A summary of these requirements at the time of writing is provided in
Annex A.

We do not view this list as being in any way complete since we expect to add new
requirements and elaborate upon existing ones in future phases and as a result of testing
by working astronomers, nevertheless it gives an overview of progress in the main areas.
This can be summarised as follows:

 All high-level requirements are met, at least to some degree, showing that the
system is in fact usable.

 All essential AAI and accounting requirements are met; a number of items are
not implemented either due to being insufficiently well-defined at present or too
low a priority.

 Requirements relating to collaboration and group working can be mostly met
using version control systems such as Git provided that users already have
access to such systems.

 Working storage and (writable) database access is at an early stage of
development.

 Requirements relating to use of external resources, such as HPC or Spark
clusters for large or long running processing tasks, are not yet well defined.

4.2 Operational Status

At present the service is operational at https://jupyter.lsst.ac.uk. It is currently open to a
small number of invited users. Accounting data shows low, but sustained, usage by a
subset of users.

A set of example notebooks (in various states of maturity) has been created at
https://github.com/lsst-uk/jupyter_notebooks.

https://lsst-uk.atlassian.net/wiki/spaces/LUSC/pages/662863877/Jupyter+Notebook+Service+Requirements+for
https://lsst-uk.atlassian.net/wiki/spaces/LUSC/pages/662863877/Jupyter+Notebook+Service+Requirements+for
https://lsst-uk.atlassian.net/wiki/spaces/LUSC/pages/662863877/Jupyter+Notebook+Service+Requirements+for
https://jupyter.lsst.ac.uk/
https://github.com/lsst-uk/jupyter_notebooks

11

5 Future Developments

5.1 Deployment

5.1.1 Magnum

As mentioned above, as soon as OpenStack Magnum becomes available on the IRIS
resources that we are using, we intend to replace our current system for deploying and
managing the Kubernetes cluster. We hope that this will simplify our deployment
process, improve the overall robustness of the system and support further work on
elasticity and automation.

5.1.2 Elasticity

At present, any change to the size of the Kubernetes cluster requires a certain amount
of work from the system administer to implement. Once Magnum is in place we expect
to invest some effort in automating this process. Automated scale-out is expected to be
straightforward; safely reducing the size of the cluster is likely to be more challenging
since we need to be sure that running (or starting) notebook servers are not interrupted.

5.1.3 Automation

The deployment and configuration of JupyterHub itself is already highly automated using
Helm. However, the various supporting services are deployed in a somewhat
idiosyncratic manner. Ideally we will both automate as much of the deployment and
configuration management as possible and minimise the number of discrete systems as
far as possible, although there is likely to be a certain amount of tension between this
and the desire to isolate critical systems such as logging and accounting.

5.2 Features

5.2.1 Integration with DAC services

As LSST:UK DAC services become available the Jupyter service will need to integrate
with them. At present the only such service is the ZTF database, which is accessible
(read-only) from Jupyter notebooks. Other services that we anticipate becoming
available during the course of LSST commissioning (2019—2021) include:

 Access to other survey catalogues (that is, in addition to ZTF)

 Access to images from surveys

 Ability to create and manage short-lived databases to support user analysis

 Access to, in real-time, the transient-event stream from (for example, ZTF)

 Access to specialised computing platforms for offloading analysis. For example,
a batch-processing cluster or a Spark cluster.

5.2.2 Additional supporting services

Version Control

The natural way to store, manage and share notebooks themselves is using a version
control system (the project uses GitHub for example). Git is available to the user in the
Jupyter environment if using our customised image, including GUI access to some
functions if they are using JupyterLab (https://jupyterlab.readthedocs.io/en/latest/).

We do not currently provide a managed repository service for users. There could be
some advantages of doing so, such as the ability to integrate with our AAI in order to
provide single sign-on and integrated group management, for example. However, we
would also imagine that many, if not most, user groups already have a version control
solution that they are happy with and would not wish to incur the costs of changing for
relatively minor benefit. There is also the consideration that providing a repository service

https://jupyterlab.readthedocs.io/en/latest/

12

represents a substantial commitment to long term secure storage of user data that should
not be undertaken lightly. Our intention is therefore to prioritise interoperation with
existing solutions, whilst letting our direction for future development be guided to some
extent by user demand.

Data Storage

We anticipate that there is likely to be some demand for a system that would allow users
to store, and potentially share, bulk data (rather than notebooks). This could be either
(or both) files and database tables. If at all possible this should integrate with the AAI
system.

Ideally, we would like to integrate with an existing system rather than building one
specifically to support the Jupyter service, especially whilst the requirements are still
uncertain.

Documentation

More extensive documentation is required, both for users and administrators. This will
need to include a curated set of example/ tutorial notebooks.

Custom Server Images

At present we have a single custom server image. As the number of users and
customisations grows we will need to find a way of managing this.

13

6 References
[1] Project Jupyter, https://jupyter.org/

[2] Project Jupyter | JupyterHub, https://jupyter.org/hub

[3] STFC Cloud, https://openstack.stfc.ac.uk

[4] IRIS: A common eInfrastructure for STFC science, https://www.iris.ac.uk/

[5] Production-Grade Container Orchestration – Kubernetes, https://kubernetes.io/

[6] EGI | Check-in, https://www.egi.eu/services/check-in/

[7] Rancher, https://rancher.com/docs/rancher/v2.x/en/

[8] Open XDMoD 8.1, https://open.xdmod.org/8.1/

[9] Elastic Stack and Product Documentation, https://www.elastic.co/guide/

https://jupyter.org/
https://jupyter.org/hub
https://openstack.stfc.ac.uk/
https://www.iris.ac.uk/
https://kubernetes.io/
https://www.egi.eu/services/check-in/
https://rancher.com/docs/rancher/v2.x/en/
https://open.xdmod.org/8.1/

14

Annex A. Requirements
This section summarises the known requirements for the Jupyter service at the time or
writing as documented at https://lsst-
uk.atlassian.net/wiki/spaces/LUSC/pages/662863877/Jupyter+Notebook+Service+Req
uirements+for.

A.1 High Level

J.1.1: A user should be able to perform an interactive analysis of survey datasets held in
the DAC, without the need to download those datasets to local system and without the
need to install astronomy software on local system.

J1.1.2: A user should be able to make use of standard (astronomy and generic) analysis
software–including: AstroPy, MatPlotLib, ...

J1.1.3: A user needs to be able to save scripted analyses

A.2 AAAI

J.2.1: Access to the DAC Notebook Service should be limited to registered users.

J.2.2: A DAC Administrator should be able to check topical institutional affiliation of each
User reliably and accurately

J.2.3: Each User's activity should be logged with sufficient detail to fulfil the DAC's
accounting obligations to the IRIS Service Provider.

J.2.4: A DAC Administrator can monitor use of IRIS-awarded computing-time/ storage
by the Notebook Service as a whole.

J.2.5: A DAC Administrator should be able to determine how much computing time has
been used, in a period, by each User.

J.2.6: A DAC Administrator should be able to determine how much storage is being used
(and has, historically, been used) by each User.

J.2.7: A DAC Administrator should be able to organise Users into Groups (N.B. based
around scientific campaigns)

J.2.8: A DAC Administrator should be able to define a computing-time quota for each
Group, reflecting the amount of computing time they are nominally expected to consume
in an allocation period.

J.2.9: A DAC Administrator should be able to define a storage quota for each Group,
reflecting the maximum amount of working storage the Group is expected to consume
during the allocation period.

J.2.10: A DAC Administrator should be able to define one or more PIs for each Group.

J.2.11: A PI should be able to monitor computing time usage by their Group

J.2.12: A PI should be able to monitor storage usage by their Group.

https://lsst-uk.atlassian.net/wiki/spaces/LUSC/pages/662863877/Jupyter+Notebook+Service+Requirements+for
https://lsst-uk.atlassian.net/wiki/spaces/LUSC/pages/662863877/Jupyter+Notebook+Service+Requirements+for
https://lsst-uk.atlassian.net/wiki/spaces/LUSC/pages/662863877/Jupyter+Notebook+Service+Requirements+for

15

A.3 Collaboration and Group Working

J.3.1: Anonymously clone a publicly accessible repository. Read-only.

J.3.2: Read/write to an existing repo on e.g. GitHub.

J.3.3: As above with a GUI.

J.3.4: Automatically set name and email parameters based on login information.

J.3.5: Private git repository for users.

J.3.6: Give users ability to set authz on private repos using same identities and groups
as for login.

A.4 Working Storage and Local Databases

J.4.1: Create a database

J.4.2: Create a table in an existing database

J.4.3: Load data from a file into an existing database table

J.4.4: Write data from a notebook (e.g. from within a pandas DataFrame) into an existing
database table

J.4.5: Read data from a database table into a notebook

J.4.6: Share an existing database table with a defined set of users

J.4.7: Run DB admin tasks (e.g. build indexes, etc) on existing database table

A.5 Escalation to Cluster/HPC Resources

Not yet determined.

