
Copyright LSST:UK Consortium 2019

Initial Assessment of Qserv for

LSST:UK

Work Package 2.4

Submission date 6/NOV/19

Version 1.0

Status Final

Author(s) inc.

institutional affiliation

Mike Read (Edinburgh),

Darren White (Edinburgh),

Bob Mann (Edinburgh)

Teng Li (Edinburgh)

Reviewer(s) George Beckett (Edinburgh),

Bob Mann (Edinburgh)

Dissemination level

Public Once finalised, it can be distributed without restriction

Project Acronym LUSC-A

Project Title UK Involvement in the Large Synoptic Survey Telescope

Document Number LUSC-A-07

INITIAL ASSESSMENT OF QSERV FOR LSST:UK

2

Version History

Version Date Comments, Changes, Status Authors, contributors,

reviewers

0.1 20/FEB/19 Initial version MAR

0.2 21/FEB/19 Added DW Queries DJW

0.3 7/FEB/19 Added brief description of query sources DJW

0.3.1 8/FEB/19 Minor update, some formatting DJW

0.3.2 11/MAR/19 Minor update to Introduction RGM

0.4 17/SEP/19 Added information on SQL Server-to-

MySQL conversion tool

ETWS

0.5 31/OCT/19 Fixing formatting and proofing text MGB

0.51 5/NOV/19 Minor updates RGM

1.0 6/NOV/19 Version 1.0 published MGB

INITIAL ASSESSMENT OF QSERV FOR LSST:UK

3

Table of Contents

VERSION HISTORY .. 2

1 EXECUTIVE SUMMARY ... 4

2 INTRODUCTION ... 5

2.1 BACKGROUND ... 5

3 QSERV ... 6

3.1 INTRODUCTION .. 6

3.2 TEST-BED DEPLOYMENT ... 7

3.2.1 Test-bed configuration.. 7

3.2.2 Single-node configuration ... 9

3.2.3 Two-node configuration ... 10

3.2.4 Containerised installation ... 11

3.3 DATA INGESTION.. 12

3.3.1 Data preparation .. 12

3.3.2 Data ingestion .. 13

3.3.3 Metadata registration .. 15

4 BENCHMARKS.. 17

4.1 AIM .. 17

4.2 QUERY SOURCES .. 17

4.3 QUERIES .. 17

4.4 OTHER QUERIES ... 28

4.5 CONCLUSIONS ... 29

5 REFERENCES .. 30

Index of Figures

Figure 1: Qserv High-level Architecture . .. 6

INITIAL ASSESSMENT OF QSERV FOR LSST:UK

4

1 Executive Summary

This report summarises an initial assessment of Qserv for LSST:UK conducted by the UK DAC

team as part of the LSST:UK Science Centre (LUSC) Phase A programme.

We have successfully set up three different Qserv configurations (single-node, multi-node,

containerised) and ingested sky survey catalogue data from UKIDSS and SDSS, stored in the

WFCAM Science Archive (WSA1) and with which the DAC team are familiar.

This process was complicated by several factors, some of which may apply to the ingestion of

any non-LSST catalogues.

 Firstly, the WSA is implemented in Microsoft SQL Server, necessitating some schema and

data conversion to generate a MySQL-compliant version that could be loaded into Qserv.

 Secondly, the WSA makes use of (out-of-range) default values, rather than nulls, and foreign

key constraints require the existence in some tables of default rows, composed entirely of

default values; Qserv does not follow that design choice, so some rows had to be removed

from WSA tables prior to ingest, and, hence, the version of UKIDSS DR8 implemented in

Qserv is not identical to the original in the WSA.

 Thirdly, the spatial partitioning scheme adopted by Qserv assumes specific (director-child)

relationships between some tables that may not have exact analogues in existing sky survey

catalogues.

For a multi-node Qserv instance, the source and object tables needed to be “chunked” – this is

intended when using Qserv. Several issues were encountered and worked around to support

chunked versions of the catalogues. The lessons learned are encapsulated in a set of scripts that

go a significant way towards automating the ingestion process.

Having ingested UKIDSS and SDSS catalogues into Qserv, we then tested Qserv’s effectiveness

and efficiency with a range of illustrative and realistic queries. Known limitations in Qserv (e.g.,

lack of neighbour tables and views) inhibited or prevented the successful implementation of

some important queries. Further, the Qserv software was found to be fragile, subject to a

number of (sometimes intermittent) failures and crashes.

Despite problems, we were able to successfully implement a little over half of the example

queries (16 out of 27). Performance was variable (running on comparable hardware): sometimes

there was little difference between Qserv and the original Microsoft SQL Server

implementations; sometimes Qserv was significantly slower; and occasionally Qserv was faster.

Further study is required to understand performance discrepancies, and the results reported

here are considered preliminary, with a more detailed performance evaluation being deferred

until Qserv is more mature, exhibiting better stability and incorporating crucial missing

functionalities.

In follow-on work it would be appropriate to further refine the ingestion process and aim to

expose a working Qserv instance to a small number of early-adopter astronomers, to gain

experience of the support of Qserv (e.g., software-update process, performance under multi-

user load) and to begin to disseminate Qserv interface characteristics to those communities who

will likely rely on Qserv for their LSST-related research programmes.

1 wsa.roe.ac.uk

INITIAL ASSESSMENT OF QSERV FOR LSST:UK

5

2 Introduction

2.1 Background

The UK DAC team, based in the Wide-Field Astronomy Unit (WFAU) at the University of

Edinburgh, operates a number of sky survey archives. These include the WFCAM Science Archive

(WSA, wsa.roe.ac.uk) for the UK Infrared Deep Sky Survey (UKIDSS, www.ukidss.org) and the

VISTA Science Archive (VSA, vsa.roe.ac.uk), which hosts data from most of the near-infrared

imaging surveys undertaken with VISTA/VIRCAM as part of the ESO Public Surveys programme.

These science archives are all currently implemented in Microsoft SQL Server.

Recognising an expectation that single-server systems will not cope with catalogues of the scale

of those from LSST, the LSST Data Management team has been developing a distributed-

database system called Qserv [https://ldm-135.lsst.io/v/DM-5035/]. LSST:UK plans to operate a

Data Access Centre (DAC), which will include catalogues from LSST, plus complementary surveys

to support multi-wavelength analyses. In order to gain familiarity with Qserv and to assess its

route to meeting UK science requirements, the DAC team undertook an initial study of Qserv

during LSST:UK Science Centre (LUSC) Phase A. This report presents the results of that initial

assessment, which covers:

(i) installation of several instances of Qserv with different configurations

(ii) ingestion of UKIDSS and SDSS data into Qserv

(iii) execution of a set of benchmark queries, designed to exercise the functionality of

Qserv and assess its performance for common query types relative to that of

existing WFAU sky survey archives.

http://www.ukidss.org/

INITIAL ASSESSMENT OF QSERV FOR LSST:UK

6

3 Qserv

3.1 Introduction

LSST will undertake, from late 2022, a ten-year survey of the dynamic universe. During

operation, the telescope will map the entire southern sky every few nights, taking

~2,000 exposures per operating night, which will generate a total data volume of ~16 TB daily.

After processing, the detected objects will be stored in database catalogues estimated to include

~37 billion stars and galaxies, constituting a dataset at the scale of tens of PB. To manage such

a huge volume of catalogues and provide query services for the worldwide astronomy

community, a brand-new DBMS (Database Management System) is needed which must fulfil the

following requirements: incremental scaling, near real-time response time for ad-hoc simple

user queries, fast turnaround for full-sky scans/correlations, reliability, and low cost.

To satisfy the needs mentioned above, the LSST Data Management team is developing a

distributed database system, Qserv, whose architecture and basic functionalities are shown as

below.

Figure 1: Qserv High-level Architecture 2.

Qserv is essentially a multi-processor and parallel relational database running on a share-

nothing server cluster. The large catalogues can be partitioned and distributed across worker

nodes according to the sky coordinates scheme of the objects, while smaller catalogues can be

replicated on each server. The user queries are firstly processed on the master node, where they

are evaluated and re-written by the Czar process (see figure) and then submitted to the worker

nodes to be executed in parallel, with the results being served back and merged on the master

node.

2 J. Becla et al., LDM-135: Database design, https://ldm-135.lsst.io/v/DM-5035/

INITIAL ASSESSMENT OF QSERV FOR LSST:UK

7

3.2 Test-bed deployment

To test Qserv, a progressively more complex sequence of installations has been proposed, which

begins with what we believe is the simplest possible installation and ends with a (very) small-

scale version of what is envisaged to be required for a Data Access Centre.

First, a Qserv installation based on a single node was made alongside, on an equivalent hardware

configuration, a stand-alone MySQL installation. This was done to allow a performance

comparison of Qserv, which uses a MySQL installation as the backend, against a plain MySQL

installation, and to have a performance data point for a single node. This information can then

be used for tuning of the parameters and to measure the speedup achieved on multi-node

installations.

The second installation is based on a two-node configuration, where one node is configured as

the master node and the other as the worker node. The aim of that is to compare the

performance of a mono-node Qserv and a multi-node Qserv to see if there is performance

speedup or overhead. This is also to test if the queries work with the partitioned tables, and if

not, to study the way to rewrite the queries efficiently to fulfil the request of Qserv.

The third installation is based on a (Docker) containerised deployment, with three containers

deployed (on one physical machine), one served as the master node and two as worker nodes.

The Docker-based installation is made to test functionalities of containerized Qserv, which could

be a common case for running large-scale production. The second and third installations were

also made as test-beds for developing partitioning and ingesting tools, to be discussed in Section

3.3.

3.2.1 Test-bed configuration

For the testbed, two machines have been set up with the following configuration:

 2 Intel Xeon E5-2600v4 CPUs, 2x 8cores 20MB cache (16 cores with HT)

 Intel X540 Dual 10Gbps LAN card

 128 GB RAM (16x8GB, DDR4 2133MHz)

 2x Intel DC3510 SSD, 120GB

 12x Hitachi 7200rpm SAS HDD, 4TB, 12Gb/s

All machines are connected to the same network switch with a 1Gbps connection. They are

reachable on that port from other machines and from the public Internet for data transfers or

queries. In addition, a second network port is used to connect the 2 machines with each other

through a 10Gbps link. This link is only usable within the test-bed environment.

For the OS, CentOS Linux release 7.3 is installed in a minimal configuration. The disks are initially

configured as software RAID based on ZFS. For all installations, a raidz2 configuration, similar to

raid6, is used with 9 data disks and 1 spare disk, with compression enabled.

[root@lsstuk1 ~]# zpool status

pool: datapool

state: ONLINE

scan: scrub repaired 0 in 2h36m with 0 errors on Tue Jan

24 14:47:25 2017

config:

NAME STATE READ WRITE CKSUM

datapool ONLINE 0 0 0

raidz2-0 ONLINE 0 0 0

sdc ONLINE 0 0 0

INITIAL ASSESSMENT OF QSERV FOR LSST:UK

8

sdd ONLINE 0 0 0

sde ONLINE 0 0 0

sdf ONLINE 0 0 0

sdg ONLINE 0 0 0

sdh ONLINE 0 0 0

sdi ONLINE 0 0 0

sdj ONLINE 0 0 0

sdk ONLINE 0 0 0

sdl ONLINE 0 0 0

sdm ONLINE 0 0 0

spares

sdn AVAIL

errors: No known data errors

In order to install Qserv, a set of basic libraries, as well as the LSST software stack, need to be

installed. This is documented in the Qserv installation instructions. The procedures are listed as

a command-line history:

1. As root, install system dependencies and enable devtoolset-7

yum install \

bison \

blas \
bzip2 \

bzip2-devel \

cmake \

curl \

flex \

fontconfig \

freetype-devel \

gawk \

gcc-c++ \

gcc-gfortran \

gettext \
git \

glib2-devel \
java-1.8.0-openjdk \

libcurl-devel \

libuuid-devel \

libXext \

libXrender \
libXt-devel \

make \

mesa-libGL \

ncurses-devel \

openssl-devel \
patch \

perl \

perl-ExtUtils-MakeMaker \

readline-devel \

sed \

tar \

which \
zlib-devel

yum install centos-release-scl

INITIAL ASSESSMENT OF QSERV FOR LSST:UK

9

yum install devtoolset-7-gcc-gfortran devtoolset-7-gcc

devtoolset-7-gcc-c++

scl enable devtoolset-7 bash

2. Install LSST stack as a non-root user (qserv)

NEWINSTALL_URL=https://raw.githubusercontent.com/lsst/

lsst/master/scripts/newinstall.sh

mkdir /home/qserv/lsst_stack

INSTALL_DIR=/home/qserv/lsst_stack

cd $INSTALL_DIR

curl -OL ${NEWINSTALL_URL}

bash newinstall.sh

. loadLSST.bash

3. Install qserv_distrib as qserv user

RELEASE="qserv-dev"

eups distrib install --tag $RELEASE qserv_distrib

setup qserv_distrib --tag $RELEASE

The LSST software stack uses EUPS to manage software releases. The release tags are listed in

the official repository, https://eups.lsst.codes/stack/src/tags/. The latest released Qserv was

used during testing, which is defined in the tag “qserv-dev”. Since Qserv was evolving quickly

during the tests, it was updated several times for bug fixing. The final version of Qserv

distribution, which is the version evaluated in this report is labelled “2016_08-1-g76ecee9+202”.

3.2.2 Single-node configuration

The Single-node configuration means that the data partitioning functionality is disabled. After

the LSST software stack was installed, the following command finished the configuration of a

single-node Qserv.

qserv-configure.py -R /datapool/qserv

To start Qserv or to have access to its control scripts, the environment script:

/home/qserv/stack/loadLSST.bash

—needs to be executed. Run /datapool/qserv_head/bin/qserv-start.sh to start the Qserv

service. To access the database behind Qserv, port 13306 is used.

For the standalone MySQL installation, MariaDB from the official repository was used. MySQL is

configured to be accessed on its default port.

The database configuration file for Qserv and MySQL is /datapool/qserv/etc/my.cnf, and

/etc/my.cnf, respectively. These configurations are not fully optimized and there are many

more possibilities to tune each configuration to a specific workload/ host platform. The chosen

configuration is shown below, and needs to be the same on both systems for benchmarking

against each other.

[mysqld]

port=3360

datadir=/var/lib/mysql

socket=/var/lib/mysql/mysql.sock

https://eups.lsst.codes/stack/src/tags/

INITIAL ASSESSMENT OF QSERV FOR LSST:UK

10

Disabling symbolic-links is recommended to prevent

assorted security risks

symbolic-links=1

bind-address=0.0.0.0

default-storage-engine = MyISAM

key_buffer_size=16G

Disabling symbolic-links is recommended to prevent

assorted security risks

symbolic-links=0

In order to avoid "table is full" error

tmp_table_size=4G

max_heap_table_size=4G

max-connections = 512

enable InnoDB support via plugin

ignore-builtin-innodb

plugin-load=innodb=ha_innodb.so

innodb_file_per_table=1

tmpdir=/datapool/tmp

Settings user and group are ignored when systemd is

used.

If you need to run mysqld under a different user or

group,

customize your systemd unit file for mariadb according

to the

instructions in http://fedoraproject.org/wiki/Systemd

[mysqld_safe]

log-error=/var/log/mariadb/mariadb.log

#general-log=/var/log/mariadb/general.log

pid-file=/var/run/mariadb/mariadb.pid

include all files from the config directory

!includedir /etc/my.cnf.d

3.2.3 Two-node configuration

In the two-node configuration, the host lsstuk1.roe.ac.uk serves as the master node, while

lsstuk4.roe.ac.uk serves as the worker node. The procedures for configuration are listed as

followed:

1. Generate the work directory for Qserv on both nodes:

qserv-configure.py -i -R /datapool/qserv_head

For worker node use /datapool/qserv_worker

vim /datapool/qserv_head/qserv-meta.conf

Edit qserv-meta.conf, change the "node

type" to "master" for head node or "worker" for worker

INITIAL ASSESSMENT OF QSERV FOR LSST:UK

11

nodes. Change "master" to "lsstuk1"

qserv-configure.py -R /datapool/qserv_head

For worker node use /datapool/qserv_worker

2. Copy the secret file to the worker node

scp \

 lsstuk1.roe.ac.uk:/datapool/qserv_head/etc/wmgr.secret

 /datapool/qserv_worker/etc/wmgr.secret

3. Start the Qserv services on both nodes

/datapool/qserv_head/bin/qserv-start.sh

4. Configure the CSS (Central State System) on the master node

qserv-admin.py "CREATE NODE WORKER2 type=worker \

port=5012 host=lsstuk1"

The database configuration is the same as the single-node installation.

3.2.4 Containerised installation

Qserv can be deployed within Docker containers. In this test, a three-node containerised Qserv

instance was deployed on lsstuk1.roe.ac.uk. Here is the procedure of the deployment:

git clone https://github.com/lsst/qserv.git

cd qserv/admin/tools/docker/deployment/localhost

cp env.example.sh env.sh

. run-multinode-tests.sh

Qserv containers, including the master node and worker nodes are deployed on the machine,

and unit tests (basic functionality tests, implemented in Qserv code, for operations such as:

create database/ table and run simple query) is performed on them. In the env.sh, parameters

like numbers of worker nodes, DNS name of the containers and version of Qserv can be defined.

Here is the one used in this test:

VERSION=dev

NB_WORKERS=3

Set nodes names

DNS_DOMAIN=localdomain

MASTER=master."$DNS_DOMAIN"

for i in $(seq 1 "$NB_WORKERS");

do
 WORKERS="$WORKERS worker${i}.$DNS_DOMAIN"

done

Set images names

MASTER_IMAGE="qserv/qserv:${VERSION}_master"
WORKER_IMAGE="qserv/qserv:${VERSION}_worker"

INITIAL ASSESSMENT OF QSERV FOR LSST:UK

12

3.3 Data ingestion

Qserv is a distributed share-nothing database designed to satisfy spatial self-joining and cross-

matching queries at a scale of trillions of detections. To achieve that, large catalogues are

partitioned using a spatial partition scheme and evenly distributed across multiple worker

nodes.

There are three kinds of tables in Qserv, director tables, child tables and non-partitioned tables.

The non-partitioned tables will be entirely replicated across all worker nodes, suitable for small

tables or tables that cannot be partitioned. The director (or dominant) table contains the sky

coordinates used for partitioning the data between worker nodes. For an LSST Data Release, the

"Object" table is chosen as the director table and "ra_ps" and "decl_ps" columns are used as the

coordinates for partitioning. Child tables are paired with the director table, via the Object Id,

which is a foreign key. Put simply, each source in the source catalogue has an ObjectID attribute,

which is guaranteed to correspond to an entry in the Object table (the Director). In Qserv,

Director and Child tables have to be partitioned to ensure that all entries in each child table

reside on the same worker node as their corresponding entry in the Director table.

To test the functionalities and performance of Qserv, we ingested a UKIDSS data release into

Qserv. We partitioned the source and detection tables (gpsSource, gpsDetection, dxsSource,

dxsDetection, lasSource, lasDetection, gcsSource and gcsDetection) as separate director tables,

since they are large, and each contains sky coordinates columns which can be used for

partitioning. The remaining UKIDSS tables are not partitioned and simply replicated to all worker

nodes.

Since Qserv did not, at the time of writing, provide an automated data ingestion system, some

of the ingestion procedures had to be done manually.

The data ingestion can be divided into three steps: data preparation, data ingesting and

metadata registration.

3.3.1 Data preparation

UKIDSS data releases are implemented within a Microsoft SQL Server account database in the

WSA. As a first step, we needed to port the data into a format that was readable by MySQL. The

schema needed to be updated first. This was done using openDBcopy version 0.51rc2

(http://opendbcopy.sourceforge.net/). openDBcopy is an Open Source project by Anthony

Smith, published under the terms of the GNU General Public License. It translates the schema

read from any database (here the UKIDSSDR8PLUS release) into a new database (here a MySQL

test database) using Hibernate to create intermediate XML files. During the translation the

intermediate and new schema files were also checked for column names that were not

compatible with either XML or MySQL reserved keywords.

The second step was data outgest into CSV files, with the columns reordered according to the

new MySQL schema. This was done using the VDFS (VISTA Data Flow System) software.

Most of the preparation code was bundled into a Python wrapper script that is available on

GitHub: https://github.com/lsst-uk/qservtestbed/tree/master/schema_translation.

After the CSV files and .sql files are outgested, some minor corrections are needed. Firstly,

columns that were named as reserved key words in MySQL need to be renamed, such as ‘dec’

in the UKIDSS data release. Secondly, records with the default ‘dec’ or ‘ra’ values must be

removed since they are designed only for the UKIDSS query requests and will be invalid

as the sky coordinates for the spatial partition.

https://github.com/lsst-uk/qservtestbed/tree/master/schema_translation

INITIAL ASSESSMENT OF QSERV FOR LSST:UK

13

3.3.2 Data ingestion

Qserv treats non-partitioned and director/child tables differently. For director and child tables,

Qserv calls the sph-partition command to partition the CSV files before copying them to the

worker nodes. For non-partitioned tables, the partitioning step is skipped.

The sph-partition command takes the CSV file and partitioning configuration files as input,

and outputs the text chunk files, which can then be used for ingestion. For convenience,

partitioning parameters are usually specified in two configuration files, one for common

parameters and one for each table. Here’s an example of partitioning the udsDetection table

with the sph-partition command:

sph-partition --config-file=common.cfg \

--config-file=udsDetection.cfg --in.csv.null=NULL \

--in.csv.delimiter=$'\t' --in.csv.escape=\\ \

--in.csv.quote=\" --in=udsDetection.tsv \

--mr.num-workers=6 --mr.pool-size=32768 \

--mr.block-size=16 --out.dir=chunks/udsDetection

Here are the configuration files for the sph-partition command:

common.cfg

Common partitioning parameters.

part = {

 num-stripes = 22

 num-sub-stripes = 7

 chunk = chunkId

 sub-chunk = subChunkId

 default-overlap = 0.5

}

in.csv = {

 # input file format

 null = '\\N'

 delimiter = '\t'

}

Output CSV format.

out.csv = {

 null = '\\N'

 delimiter = '\t'

 escape = '\\'

 no-quote = true

}

udsDetection.cfg

Source table primary key column.

id = multiframeID

director table location

dirDb = UKIDSSDR8_udsDetection

dirTable = udsDetection

part = {

INITIAL ASSESSMENT OF QSERV FOR LSST:UK

14

 pos = 'ra, decl'

 overlap = 0.5

}

in.csv = {

 # List of Source table column names, in order of

occurrence. Some fields are skipped here.

 field = [

 multiframeID

 extNum

 seqNum

 cuEventID

 filterID

 isoFlux

 isoMag

 ...

]

}

Several parameters are important here: the name of the sky coordinates columns (pos), and the

chunk overlap radius (overlap) which is set to be 0.5 degree for all director tables in our

experiment. The number of chunks, sub-chunks and overlap radius are important parameters

and must be set with respect to users’ query needs, since Qserv will not perform join queries

across chunks. Also, the overlap radius must not be larger than the width of the chunk.

To be noted, the data partitioning is integrated with the qserv-data-loader.py script by

default if the "--skip-partition" option is not specified, so it’s usually not needed to run the

sph-partition command manually.

After the tables are partitioned, the qserv-data-loader.py script could then be used to load the

data. The following examples show how to load the non-partitioned tables, director tables and

pre-partitioned tables (using sph-partition), respectively.

wmgr_options="--host=127.0.0.1 --port=5012 \

--secret=/path/to/wmgr.secret"

datapath="/path/to/data/"

workdir="/datapool/qserv_head/"

use --one-table and --skip-partition options together

qserv-data-loader.py $wmgr_options -W WORKER1 \

--delete-tables --css-remove \

--empty-chunks=$workdir/var/lib/qserv/empty_qservTest.txt \

--config=$datapath/common.cfg \

--config=$datapath/udsSource.cfg \

--tmp-dir=/tmp/data-loader-tmp --one-table \

--skip-partition qservTest udsSource $datapath/udsSource.sql \

$datapath/udsSource.csv

Partitioning parameters defined in .cfg files, which are the

same as ones used by sph-partition

qserv-data-loader.py -v $wmgr_options -W WORKER1 \

--delete-tables --css-remove \

--empty-chunks=$workdir/var/lib/qserv/empty_qservTest.txt \

--config=$datapath/common.cfg \

--config=$datapath/udsSource.cfg \

--tmp-dir=/tmp/data-loader-tmp \

--chunks-dir=/tmp/data-loader-chunks \

qservTest udsSource $datapath/udsSource.sql \

INITIAL ASSESSMENT OF QSERV FOR LSST:UK

15

$datapath/udsSource.csv

Files generated by sph-partition should be under /tmp/data-

loader-chunks. csv not needed

qserv-data-loader.py $wmgr_options -W WORKER1 --delete-tables \

--css-remove \

--empty-chunks=$workdir/var/lib/qserv/empty_qservTest.txt \

--config=$datapath/common.cfg \

--config=$datapath/udsSource.cfg \

--chunks-dir=/tmp/data-loader-chunks --skip-partition \

qservTest udsSource $datapath/udsSource.sql

During ingestion, table information will be registered to the Central State System (CSS), and

metadata table will be built on the head node. Chunks are loaded evenly to all worker nodes

using a round-robin policy.

An empty-chunk file will be created at /datapool/qserv_head/var/lib/qserv for each

database for optimisation of queries. The empty-chunk file is just a plain text file listing the

numbers of the chunks that are empty.

3.3.3 Metadata registration

During the evaluation, Qserv had several issues which caused the join query between director

tables to fail. In order to enable join queries, some complex “hack” must be done manually.

Firstly, the partition identifier of tables that can be joined must be set to be the same. The reason

is that, Qserv requires tables to be equally partitioned if users try to perform join queries on

them to avoid data exchange between worker nodes. And the way Qserv evaluates whether two

tables are equally partitioned is by simply compare the partition identifiers of them.

This can be done by modifying the CSS data, which is stored in the qservCssData database on

the master node. The following example shows how to set partition identifiers of the example

databases (UKIDSSDR8_dxsSource and UKIDSSDR8_dxsDetection) to the same value

(0000000001).

UPDATE qservCssData.kvData SET

kvVal='{"partitioningId":"0000000001","releaseStatus":"R

ELEASED","storageClass":"L2"}' WHERE

kvKey='/DBS/UKIDSSDR8_dxsSource/.packed.json';

UPDATE qservCssData.kvData SET

kvVal='{"partitioningId":"0000000001","releaseStatus":"R

ELEASED","storageClass":"L2"}' WHERE

kvKey='/DBS/UKIDSSDR8_dxsDetection/.packed.json';

Secondly, the chunks of tables that need to be joined must be “aligned” on all worker nodes.

The reason for that is, the sph-partition tool names every chunk according to its position on the

sky, so that every object close enough will end up with the same chunk number even if they are

in different tables. One problem is that for some tables, the certain block of the sky can be empty

and Qserv does not create empty chunk for it, at the time of writing. However, during join

queries, Qserv still tries to find every corresponding chunk. So if one table holds a certain chunk

while another does not, the query will crash. As a result, empty chunks must be manually created

on worker nodes to enable join queries. This includes creating the chunk table, the overlap table,

registering metadata on both the master node and worker nodes.

INITIAL ASSESSMENT OF QSERV FOR LSST:UK

16

On the worker node, create chunk table and overlap table (with chunk number 444), and register

them in the qservw_worker.Chunks table.

Create table UKIDSSDR8.Object_444

like UKIDSSDR8.Object_440;

Create table UKIDSSDR8.ObjectFullOverlap_444

like UKIDSSDR8.ObjectFullOverlap_440;

insert into qservw_worker.Chunks (db,chunk)

values("UKIDSSDR8",444);

On the master node, create metadata in the qservCssData.kvData table.

INSERT INTO qservCssData.kvData (kvKey, parentKvID)

value("/DBS/UKIDSSDR8/TABLES/Object/CHUNKS,1664);

INSERT INTO qservCssData.kvData (kvKey, parentKvID)

value("/DBS/UKIDSSDR8/TABLES/Object/CHUNKS/REPLICAS,1665

);

INSERT INTO qservCssData.kvData (kvKey, parentKvID)

value("/DBS/UKIDSSDR8/TABLES/Object/CHUNKS/REPLICAS/0000

000001,1666);

INSERT INTO qservCssData.kvData (kvKey, kvVal,

parentKvID)

value("/DBS/UKIDSSDR8/TABLES/Object/CHUNKS/REPLICAS/0000

000001/.packed.json,{"nodeName":"WORKER1"},1667);

For an installation with more than one worker node, things get more complicated because Qserv

currently uses a simple round-robin policy to distribute all chunks, which means the chunks are

by default randomly distributed. To avoid data exchange between worker nodes, all chunks with

the same number must sit on the same node. To achieve that, some extra modification must be

done in the qserv-data-loader.py script.

To make things easier, an ingesting tool, https://github.com/lsst-

uk/qservtestbed/tree/master/ingest has been developed which handles all problems described

in this section. This tool is a technology preview, which can help guide the ingestion process for

an experienced Qserv administrator, but is not sufficiently robust for a non-expert.

https://github.com/lsst-uk/qservtestbed/tree/master/ingest
https://github.com/lsst-uk/qservtestbed/tree/master/ingest

INITIAL ASSESSMENT OF QSERV FOR LSST:UK

17

4 Benchmarks

4.1 Aim

Having set up several versions of Qserv, and ingested example sky survey datasets

((UKIDSSDR8plus and BestDR7)), with which the DAC team are familiar, we next wanted to

evaluate and benchmark Qserv using a suite of SQL queries that are indicative of likely LSST

science use-case scenarios. Benchmarking was completed using the two node (head node plus

one worker) configuration. The SQL queries were built around UKIDSS and SDSS database

releases, and were known to run on an existing Microsoft SQL Server installation in the WSA.

The SQL queries are available from GitHub:

 https://github.com/lsst-uk/qservtestbed/tree/master/wsa — holds the original starting

point for the queries working under MS SQL server

 https://github.com/lsst-uk/qservtestbed/tree/master/qserv — holds the re-worked queries

for Qserv.

4.2 Query Sources

The queries used are collated from three sources:

 Queries named as RGM*.sql are inspired by science requirements outlined in the

LSST:UK Phase B Preparation workshop, held at the Royal Observatory Edinburgh,

26th—28th April 2017. These took the form of brief statements of science goals for LSST

data translated into roughly equivalent queries to run on the WSA.

 Queries named as NCH*.sql are inspired by two papers describing the WFCAM and

VISTA Science Archives – [1] and [2].

 Queries named as DW*.sql are inspired by the LSST document page containing a

compilation of expected LSST common queries. Queries are chosen based on query

complication and common usage, designed to test the database capabilities – Error!

Reference source not found..

For each query, we reproduce the form of the query and discuss, in broad terms, our success in

porting the query to work with Qserv and any performance differences observed.

4.3 Queries

RGM1.sql

A workshop attendee expressed the requirement of being able to perform forced photometry

of VISTA images at the positions of interesting LSST sources. This query identifies the filenames

of UKIDSS images around the positions of point sources selected according to a colour-

magnitude cut intended to be find highly-redenned quasars.

select mf.fileName,f.shortName,l.ra,l.decl,obstype,frameType from

UKIDSSDR8_lasSource.lasSource as l,UKIDSSDR8.CurrentAstrometry as ca,

UKIDSSDR8.Multiframe as

mf, UKIDSSDR8.MultiframeDetector as mfd, UKIDSSDR8.Filter as f where

mf.multiframeID=mfd.multiframeID and mf.multiframeID=ca.multiframeID

and

mfd.extNum=ca.extNum and f.filterID=mf.filterID and mf.fileName !=

'NONE'

AND ((l.ra >= minRA and l.ra <= maxRA) or (l.ra + 360.0 >= minRA and

l.ra

https://github.com/lsst-uk/qservtestbed/tree/master/wsa
https://github.com/lsst-uk/qservtestbed/tree/master/qserv

INITIAL ASSESSMENT OF QSERV FOR LSST:UK

18

+ 360.0 <= maxRA)) and (l.decl >= minDec and l.decl <= maxDec) and

obstype LIKE 'OBJECT' and frameType like '%stack' and j_1mhpnt +hmkpnt

>

2.5 and kapermag3 > 0 and kapermag3 < 16.5 AND (priOrSec<=0 OR

priOrSec=frameSetID) AND yClass = -1.0 AND yppErrBits = 0 AND j_1Class

=

-1.0 AND j_1ppErrBits = 0 AND hClass = -1.0 AND hppErrBits = 0 AND

(j_2Class=-1.0 OR j_2Class = -9999) AND j_2ppErrBits <= 0 AND

(kClass=-1.0 OR kClass = -9999) AND kppErrBits <= 0 AND yXi BETWEEN

-1.0

AND 1.0 AND yEta BETWEEN -1.0 AND 1.0 AND j_1Xi BETWEEN -1.0 AND 1.0

AND

j_1Eta BETWEEN -1.0 AND 1.0 AND hXi BETWEEN -1.0 AND 1.0 AND hEta

BETWEEN

-1.0 AND 1.0 AND ((kXi BETWEEN -1.0 AND 1.0 AND kEta BETWEEN -1.0 AND

1.0)

OR kXi < -0.9e9);

A straightforward query joining one of the UKIDSS chunked tables with some metadata tables.

The original query used a WSA view, reliableLASpointsource, not available under Qserv so

the query was expanded to include the SQL of the view.

Issues: Initially there were issues with missing data in the Multiframe table and then in using

“NOT LIKE” and -1 integers. Multiframe was re-loaded. The query was re-worked to use “LIKE”

and -1.0. These bugs should now have been fixed by the developers.

Performance - the Qserv and MSSQL queries return the same rows. The MSSQL query is about

3 times quicker, some of this will be due to the indexes present in the MSSQL installation that

are not present in Qserv.

RGM2.sql

A workshop attendee was interested in how to generate colour images of strong lens candidates.

This query finds WSA filenames for Y, H and K images containing objects in a certain ellipticity

range.

Select s.ra as ra,s.decl as decl,y.fileName as yFile, l.yeNum as

yExtNum from UKIDSSDR8_lasSource.lasSource as s,

UKIDSSDR8.lasMergeLog as l, UKIDSSDR8.Multiframe as y,

UKIDSSDR8.Multiframe as h, UKIDSSDR8.Multiframe as k

where yEll between 0.8 and 0.85 and hEll between 0.8 and 0.85 and

kEll between 0.8 and 0.85 and s.frameSetID=l.frameSetID

and y.multiframeID=ymfID and h.multiframeID=hmfID and

k.multiframeID=kmfID;

A simple table join query. Using a chunked source table and metadata tables

Issues - none

Performance - same results, very similar times

RGM3.sql

A workshop attendee envisaged selecting sources with red centres and blue outer regions, to

try and identify double source-plane gravitational lenses. This query implements something

roughly analogous using pairs of aperture magnitudes.

select ra,decl,frameSetID,yAperMag3,j_1AperMag3,hAperMag3,kAperMag3,

(hAperMag6-kAperMag6)-(hAperMag3-kAperMag6),

INITIAL ASSESSMENT OF QSERV FOR LSST:UK

19

(j_1AperMag3-yAperMag3)-(j_1AperMag6-yAperMag6)

 from UKIDSSDR8_lasSource.lasSource as s where

yClass=1 and j_1Class=1 and hClass=1 and kClass=1 and yppErrBits=0 and

j_1ppErrBits=0

and hppErrBits=0 and kppErrBits=0

and (hAperMag6-kAperMag6)-(hAperMag3-kAperMag3) >1

and (j_1AperMag3-yAperMag3)-(j_1AperMag6-yAperMag6) > 1

and j_1AperMag3>0 and yAperMag3 >0 and j_1AperMag6 > 0 and yAperMag6

>0

and kAperMag3 > 0 and hAperMag3 >0 and kAperMag6 > 0 and hAperMag6 >

0

order by yAperMag3;

A simple single chunked source table scan.

Issues - could not assign aliases to arithmetic combination eg select A-B as C. Issue reported to

devs

Performance - same results, very similar times

RGM4.sql

A workshop attendee was interested in comparing photometric redshifts estimated using

different algorithms. SDSS DR8 contains two photo-z tables, but we were using DR7, as that has

neighbour tables with UKIDSS DR8, so we had to join the photoz table with itself in this query.

select pz1.z as z1,pz1.zErr as zErr1, pz2.z as z2,pz2.zErr as zErr2

from BestDr7.Photoz as pz1, BestDr7.Photoz as pz2

where pz1.objID=pz2.objID and pz1.z > 0.3 and pz1.z < 0.4

select pz1.z, pz1.zerr, pz2.z, pz2.zerr from bestdr8..photoz as pz1,

bestdr8..photozrf as pz2 where pz1.objid=pz2.objid and pz1.z > 0.3 and

pz1.z < 0.4

An SDSS table join query. Large number of rows are returned, so ran from shell e.g.

mysql --host 127.0.0.1 --port 4040 --user qsmaster -e "select blah from blah;" > results.txt

Issues - we’re using BestDr7 as that is neighboured with UKIDSSDR8. The table photozrf was

introduced in BestDR8 so for now just join photoz with itself.

Performance – Qserv was 3—4 times slower than MS SQL Server. Possibly this is an issue in

staging of results?

RGM5.sql

A workshop attendee was interested in extracting information from existing catalogues close to

the position of a newly-discovered LSST transient, so this query extracts photometric and

classification info from the WSA around a particular position.

select ra,decl,yDeblend,yAperMag3,yClass,yppErrBits,

j_1Deblend,j_1AperMag3,j_1Class,j_1ppErrBits,hDeblend,hAperMag3,hClas

s,hppErrBits,

kDeblend,kAperMag3,kClass,kppErrBits

from UKIDSSDR8_lasSource.lasSource where

qserv_areaspec_circle(181.6,-0.6,0.0333333);

Cone search of chunked table using qserv_areaspec_circle

Issues - none

INITIAL ASSESSMENT OF QSERV FOR LSST:UK

20

Performance - same results, very similar times

RGM6.sql

A workshop attendees wanted to select stellar tracers of Galactic structure in (u-g,g-r) space, so

this query attempts to select stars from the UKIDSS Large Area Survey (LAS) on the basis of their

colours.

SELECT ra,decl,yAperMag3,j_1Apermag3,hAperMag3 FROM

UKIDSSDR8_lasSource.lasSource WHERE (priOrSec <= 0 OR priOrSec =

frameSetID)

AND yClass BETWEEN -2.0 AND -1.0 AND yppErrBits < 256 AND j_1Class

BETWEEN -2.0 AND -1.0 AND j_1ppErrBits < 256

AND hClass BETWEEN -2.0 AND -1.0 AND hppErrBits < 256 AND (j_2Class

BETWEEN -2.0 AND -1.0 OR j_2Class = -9999)

AND (j_2ppErrBits < 256) AND (kClass BETWEEN -2.0 AND -1.0 OR

kClass = -9999) AND (kppErrBits < 256)

AND yAperMag3-j_1Apermag3 < 0 AND abs(j_1AperMag3 - j_2AperMag3) <

0.05;

Another simple single chunked source table scan

Issues - Qserv didn’t like where x = -1 even though the attributes were ints, changed to -1.0 etc.

Reported to devs. Originally this query was to use a view of lassource but views not available(?)

in Qserv so expanded SQL constraints to include the view selection.

Performance - same results, very similar times

RGM7.sql

A workshop attendee wanted to identify intrinsically faint white dwarf stars on the basis of high

proper motions.

Issues - no proper motions available in UKIDSSDR8, not implementable in either system but

would be a single table trawl.

RGM8.sql

A workshop attendee was interested in stellar lightcurves to probe stellar rotation periods, and

this query models extraction of multi-epoch photometry from the UKIDSS Deep Extragalactic

Survey (DXS).

SELECT m.mjdObs,d.aperMag3,d.aperMag3Err,d.ppErrBits,d.seqNum,x.flag

FROM UKIDSSDR8_dxsDetection.dxsDetection AS d,

UKIDSSDR8.dxsSourceXDetectionBestMatch AS x, UKIDSSDR8.Multiframe AS

m WHERE x.sourceID=446677639289 AND x.multiframeID=d.multiframeID

AND x.extNum=d.extNum AND x.seqNum=d.seqNum AND

x.multiframeID=m.multiframeID AND d.filterID=5 ORDER BY mjdObs;

Table join query.

Issues - Tables must be specified in the correct order in the query: Need to put the chunked

table, UKIDSSDR8_dxsDetection.dxsDetection, first to get it to work. Otherwise crashes Qserv.

Performance - same results, very similar times

INITIAL ASSESSMENT OF QSERV FOR LSST:UK

21

RGM9.sql

A workshop attendee wanted to discover candidate exoplanet microlensing events as sources

that brighten by more than three magnitudes in thirty days. This query looks for highly-variable

sources in DXS.

SELECT x.sourceID AS xid,min(d.aperMag3),max(d.aperMag3),count(*) FROM

UKIDSSDR8_dxsSource.dxsSource AS s,

UKIDSSDR8.dxsSourceXDetectionBestMatch AS x, UKIDSSDR8.dxsVariability

AS v, UKIDSSDR8_dxsDetection.dxsDetection as d

WHERE s.sourceID=v.sourceID AND s.mergedClass=-1.0 AND

v.variableClass=1 and abs(kMinMag-kMaxMag) >3 and

x.sourceID=s.sourceID

and x.multiframeID=d.multiframeID AND x.extNum=d.extNum AND

x.seqNum=d.seqNum and scisql_angSep(s.ra, s.decl, d.ra, d.decl) < 0.01

and d.aperMag3 > 0 GROUP BY xid;

Table joins including joins between two chunked tables, source & detection

Issues - Needed to expand sub-query as not available in Qserv. Then Qserv cannot make use of

the neighbour table and the query needs a scisql_angSep to make it run. Reported to devs,

neighbour table use is planned.

Performance – much, much slower, lots of trigonometric calculations.

RGM10.sql - (query below from MS SQl Server)

A workshop attendee was interested in finding candidate high-z quasars that are present in

VISTA, but not in LSST. This query attempted to model that through selecting UKIDSS LAS sources

that do not have neighbours in the SDSS.

select ra ,dec, framesetid,

yapermag3,j_1apermag3,hapermag3,kapermag3,mergedclass from lassource

as s

where ra between 325 and 355 and dec between -1 and -0.5

and sourceid not in (select masterobjid from lasSourceXDR7PhotoObjAll

)

and yapermag3>0 and j_1apermag3>0 and hapermag3 >0

and kapermag3>0 and mergedclass=-1

Uses NOT IN sub-query

Issues - can’t think how to implement in Qserv

INITIAL ASSESSMENT OF QSERV FOR LSST:UK

22

NCH1.sql - query not currently working, got this far

This query was to identify the most flaring stars, ordered by number of candidate flares.

SELECT v.sourceID as vID, s.ra as sra, s.decl as sdecl, v.framesetID

as

vFSID, knGoodObs as gknGoodObs, kMinMag as gkMinMag, kmedianMag as

gkmedianMag, kMaxMag as gkMaxMag, variableClass as gvariableClass,

mergedClass as gmergedClass, count(*) as nBrightDetections FROM

UKIDSSDR8_dxsSource.dxsSource AS s,

UKIDSSDR8.dxsSourceXDetectionBestMatch

AS b, UKIDSSDR8.dxsVariability AS v,

UKIDSSDR8_dxsDetection.dxsDetection as

d WHERE s.sourceID=v.sourceID AND b.sourceID=v.sourceID AND

b.multiframeID=d.multiframeID AND b.extNum=d.extNum AND

b.seqNum=d.seqNum

and scisql_angSep(s.ra, s.decl, d.ra, d.decl) < 0.01 and kmedianMag<19.

and

kmedianMag>0. AND knGoodObs>=5 AND kbestAper=5 AND (kmedianMag-

kMinMag)>0.5

AND kMinMag>0. AND d.seqNum>0 AND d.ppErrBits IN (0,16) AND

d.filterID=5 AND

d.aperMag5>0 AND d.aperMag5<(kmedianMag-0.5) group by vID, sra, sdecl,

vFSID, gknGoodObs, gkMinMag, gkmedianMag, gkMaxMag, gvariableClass,

gmergedClass;

Table joins that should make use of the neighbour table

Issues - as with RGM9 need to add scisql_angSep to get this to parse so not able to make efficient

use of the neighbour table. Then hit a problem with group’ing by multiple attributes. Reported

to devs, probably fixed but we were not running latest version.

Performance - not working but using scisql_angSep will be much slower.

NCH2.sql

This query was to extract lightcurves for the above flaring stars.

MS SQL query reads:

select s.sourceID,d.filterID,mjdObs,aperMag3

from dxsDetection d, dxsSource s, dxsSourceXDetectionBestMatch x,

Multiframe m

where s.sourceID = x.sourceID and x.multiframeID = d.multiframeID and

x.extNum = d.extNum

and x.seqNum = d.seqNum and m.multiframeID = x.multiframeID and

d.aperMag3 > 0

and s.sourceID in (

SELECT v.sourceID

FROM dxsVariability as v, dxsSource as s, dxsSourceXDetectionBestMatch

as b,

dxsDetection as d

WHERE s.sourceID=v.sourceID AND b.sourceID=v.sourceID AND

b.multiframeID=d.multiframeID

AND b.extNum=d.extNum AND b.seqNum=d.seqNum AND

/* select the magnitude range, brighter than Ks=17 and not default. */

kMedianMag<19. and kMedianMag>0. AND

/* at least 5 observations */

knGoodObs>=5 AND kBestAper=5 AND

INITIAL ASSESSMENT OF QSERV FOR LSST:UK

23

/* Min mag is at least 2 magnitudes brighter than median mag(but minMag

is not default) */

(kMedianMag-kMinMag)>0.5 AND kMinMag>0. AND

/* Only good K band detections in same aperture as statistics are

calculated in*/

d.seqNum>0 AND d.ppErrBits IN (0,16) AND d.filterID=5 AND d.aperMag5>0

AND d.aperMag5<(kMedianMag-0.5)

/* Group detections */

GROUP BY v.sourceID, s.ra, s.dec,

v.framesetID, knGoodObs, kMinMag, kMedianMag, kMaxMag, variableClass,

mergedClass

HAVING COUNT(*)>2

)

order by s.sourceID,d.filterID,mjdObs

Issues – not implementable, as uses subquery, and cannot work out how to re-express it

otherwise.

NCH3.sql - not implementable, uses CAST.

This query genrates counts-in-cells of sources in the UKIDSS Galactic Plane Survey (GPS).

MS SQL query reads:

SELECT CAST(ROUND(l*6.0,0) AS INT)/6.0 AS lon,

CAST(ROUND(b*6.0,0) AS INT)/6.0 AS lat,

COUNT(*) AS num

FROM gpsSource

WHERE k_1Class BETWEEN -2 AND -1 AND

k_1ppErrBits < 256 AND

/* Make a seamless selection (i.e. exclude

duplicates) in any overlap regions: */

(priOrSec=0 OR priOrSec=frameSetID)

/* Bin up in 10 arcmin x 10 arcmin cells: */

GROUP BY CAST(ROUND(l*6.0,0) AS INT)/6.0,

CAST(ROUND(b*6.0,0) AS INT)/6.0

Issues – not implementable, as uses CAST, and cannot work out how to re-express it otherwise.

NCH4.sql

This query was to select quasar candidates on the basis of optical/near-infrared colours.

MS SQL query reads:

SELECT psfMag_i-psfMag_z AS imz,

psfMag_z-j_1AperMag3 AS zmj,

psfMag_i-yAperMag3 AS imy,

ymj_1Pnt AS ymj

FROM lasPointSource AS s,

lasSourceXDR7PhotoObj AS x,

BestDR7..PhotoObj AS p

WHERE

/* Join predicates: */

s.sourceID = x.masterObjID AND

x.slaveObjID = p.objID AND

x.distanceMins < 1.0/60.0 AND

/* Select only the nearest primary SDSS

point source crossmatch: */

x.distanceMins IN (

INITIAL ASSESSMENT OF QSERV FOR LSST:UK

24

SELECT MIN(distanceMins)

FROM lasSourceXDR7PhotoObj

WHERE masterObjID = x.masterObjID AND

sdssPrimary = 1 AND

sdssType = 6

) AND

/* Remove any default SDSS mags: */

psfMag_i > 0.0 AND

/* Colour cuts for high-z QSOs from

Hewett et al. (2006) and Venemans

et al. (2007): */

psfMag_i-yAperMag3 > 4.0 AND

ymj_1Pnt < 0.8 AND

psfMagErr_u > 0.3 AND

psfMagErr_g > 0.3 AND

psfMagErr_r > 0.3

Issues – not implementable, as uses subquery, and cannot work out how to re-express it

otherwise.

NCH5.sql

This query selects extragalactic variable sources.

SELECT

s.sourceID,s.ra,s.decl,v.frameSetID,v.jmedianMag,v.jMagRms,v.jnGoodOb

s,v.jskewness,v.hmedianMag,

v.hMagRms,v.hnGoodObs,v.hskewness, v.kmedianMag,

v.kMagRms,v.knGoodObs,v.kskewness,

jMaxMag-jMinMag,hMaxMag-hMinMag,kMaxMag-kMinMag

FROM UKIDSSDR8_dxsSource.dxsSource AS s,

UKIDSSDR8.dxsVariability AS v WHERE v.sourceID=s.sourceID AND

s.mergedClass IN (-1.0,-2.0) AND v.variableClass=1

AND (((jMaxMag-jMinMag)>0.1 AND jMinMag>0. AND jnGoodObs>=5) OR

((hMaxMag-hMinMag)>0.1 AND hMinMag>0. AND hnGoodObs>=5)

OR ((kMaxMag-kMinMag)>0.1 AND kMinMag>0. AND knGoodObs>=5));

Table join query.

Issues - as previously can’t assign column name to arithmetic combination of attributes.

Reported to devs.

Performance - similar times, one more result row (rounding differences).

DW1.sql

This query (based on query 070) was to perform multiple joins between tables.

Issues - not currently implementable, as requires subquery function

DW2.sql

This query (based on query 007) selects time series data for sources in a given area of sky in a

given photometric band and with a given variability index.

SELECT s.sourceID as ssID, v.jmeanMag as meanMag, m.mjdObs as MJD,

 d.aperMag3 as obsMag, d.aperMag3err as errMAg

INITIAL ASSESSMENT OF QSERV FOR LSST:UK

25

FROM UKIDSSDR8_dxsDetection.dxsDetection AS d,

UKIDSSDR8_dxsSource.dxsSource AS s,

UKIDSSDR8.dxsSourceXDetectionBestMatch AS x,

UKIDSSDR8.Multiframe AS m,

UKIDSSDR8.dxsVariability AS v

WHERE x.sourceID=s.sourceID

AND x.multiframeID=d.multiframeID

AND x.extNum=d.extNum

AND x.seqNum=d.seqNum

AND x.multiframeID=m.multiframeID

AND d.filterID=3

AND v.sourceID=s.sourceID

AND v.jprobVar > 0.8

AND d.aperMag3 > -100

AND scisql_angSep(d.ra, d.decl,334.25,0.3) < 0.5

AND scisql_angSep(d.ra, d.decl,s.ra,s.decl) < 0.1

ORDER BY ssID, MJD

Issues – Same with RGM8.sql above. Tables cannot be in any order in the query. Need to put the

UKIDSSDR8_dxsDetection.dxsDetection table first for query to work.

Performance - same results, big difference in timing. WSA: 37 seconds, QServ 2hrs6mins. The

WSA MS SQL query is not having to do any trig to join source and detection tables.

DW3.sql

This query (based on query 047) selects variable objects near galaxies.

SELECT v.sourceID as vID, v.ra as vRA, v.decl as vDec, g.sourceID as dID,

g.ra as dRA, g.decl as dDec, scisql_angSep(g.ra, g.decl, v.ra, v.decl) as

angsep

FROM UKIDSSDR8_dxsSource.dxsSource AS g,

 UKIDSSDR8.dxsVariability AS v

WHERE v.sourceID <> g.sourceID

AND g.pGalaxy > 0.99

AND v.jprobVar > 0.9

AND v.ra > 0.0

AND scisql_angSep(g.ra, g.decl, v.ra, v.decl) < 0.00167

Issues – None, simple transfer

Performance – Some difference. Times out on WSA after 10,800 seconds (3 hours) but runs in

1hr 23mins on Qserv.

INITIAL ASSESSMENT OF QSERV FOR LSST:UK

26

DW4.sql

This query (based on query 013) finds close pairs of sources with similar colours.

SELECT DISTINCT s1.sourceID AS ID_1, s2.sourceID AS ID_2

FROM UKIDSSDR8_dxsSource.dxsSource as s1,

 UKIDSSDR8_dxsSource.dxsSource as s2

WHERE scisql_angSep(s1.ra, s1.decl, s2.ra, s2.decl) < 0.0167

AND s1.sourceID <> s2.sourceID

AND ABS(s1.jmhPnt - s2.jmhPnt) < 0.5

AND ABS(s1.hmkPnt - s2.hmkPnt) < 0.5

AND ABS(s1.jmkPnt - s2.jmkPnt) < 0.5

Issues – None, simple transfer to Qserv

Performance – Big difference. Times out on WSA after 10,800 seconds (3 hours) but runs in

9mins 35secs on Qserv3.

DW5.sql

This query (based on query 029) was to find the magnitude of the closest source within a given

distance of a particular location.

Issues - Not currently implementable, as requires subquery function

DW6.sql

This query (based on query 025) was to find all galaxies in regions of high source density.

Issues - Not currently implementable, as requires subquery function

INITIAL ASSESSMENT OF QSERV FOR LSST:UK

27

DW7.sql

This query (based on query 043) is to find all stellar neighbours within a certain distance for

which at least one of the pair has the colours of a white dwarf.

SELECT S1.objID AS WD, S2.objID AS Star

FROM BestDR7_PhotoObjAll.PhotoObjAll S1,

 BestDR7_PhotoObjAll.PhotoObjAll S2

WHERE S1.type = 6

AND S2.type = 6

AND scisql_angSep(S1.ra, S1.decl, S2.ra, S2.decl)*3600 < 10

AND S1.u-S1.g < 0.4

AND S1.g-S1.r < 0.7

AND S1.r-S1.i > 0.4

AND S1.i-S1.z > 0.4

AND S1.objID <> S2.objID

AND scisql_angSep(S1.ra, S1.decl, S2.ra, S2.decl)<0.1

Issues – None, simple transfer to QServ

Performance – Times out on WSA, returns error from QServ.

DW8.sql

This query (based on query 034) is searching for merging galaxy pairs.

SELECT g1.objID AS Gal1_ID, g2.objID AS Gal2_ID

FROM BestDR7_PhotoObjAll.PhotoObjAll g1,

 BestDR7_PhotoObjAll.PhotoObjAll g2,

 BestDr7.Photoz n

WHERE g1.type = 3 AND g2.type = 3

AND g1.objID = n.objID

AND g2.objID = n.nnObjID

AND g1.objId < g2.ObjID

AND g1.petrorad_u > 0 AND g2.petrorad_u > 0

AND g1.petrorad_g > 0 AND g2.petrorad_g > 0

AND g1.petrorad_r > 0 AND g2.petrorad_r > 0

AND g1.petrorad_i > 0 AND g2.petrorad_i > 0

AND g1.petrorad_z > 0 AND g2.petrorad_z > 0

AND g1.petroradErr_g > 0 AND g2.petroradErr_g > 0

AND g1.petroMag_g BETWEEN 16 AND 21

INITIAL ASSESSMENT OF QSERV FOR LSST:UK

28

AND g2.petroMag_g BETWEEN 16 AND 21

AND g1.modelmag_u > -9999

AND g1.modelmag_g > -9999

AND g1.modelmag_r > -9999

AND g1.modelmag_i > -9999

AND g1.modelmag_z > -9999

AND g2.modelmag_u > -9999

AND g2.modelmag_g > -9999

AND g2.modelmag_r > -9999

AND g2.modelmag_i > -9999

AND g2.modelmag_z > -9999

AND abs(g1.modelmag_g - g2.modelmag_g) > 3

AND (g1.petroR50_r BETWEEN 0.25*g2.petroR50_r AND 4.0*g2.petroR50_r)

AND (g2.petroR50_r BETWEEN 0.25*g1.petroR50_r AND 4.0*g1.petroR50_r)

AND (scisql_angSep(g1.ra, g1.decl, g2.ra, g2.decl)/3600.0 <=

(g1.petroR50_r + g2.petroR50_r))

AND scisql_angSep(g1.ra, g1.decl, g2.ra, g2.decl) < 0.1

Issues – None, simple transfer to QServ

Performance – Times out on WSA, runs in 5hrs 01mins 10secs. Returns only one result.

DW9.sql

This query (based on query 048) was to identify variable sources in clusters

Issues – Not currently implementable, uses subquery.

DW10.sql

This query (based on query 066) was to identify extremely red objects.

Issues – Not currently implementable, uses many subqueries.

4.4 Other queries

As well as the “science” queries above, we also considered a comparison of table trawls and

index searches.

Table scan

select * from gpsSource where mergedClassStat=-111.94543301;

Qserv took about 10 minutes, about twice the time of MSSQL

Index lookup

select * from gpsSource where jApermag3=7.12345;

There is an index on jApermag3 in MSSQL so as expected 10 minutes in Qserv (as it’s doing a full

scan) vs 1 sec in MSSQL

INITIAL ASSESSMENT OF QSERV FOR LSST:UK

29

Using the primary key of director table

select max(sourceID) from gpsSource;

Qserv - 2 sec

select * from gpsSource where sourceID=438916075061

Qserv - 1 sec

As expected Qserv is fast at these lookups.

4.5 Conclusions

Coming from a background of freeform case-insensitive SQL queries, it took a while to get used

to writing Qserv SQL. Ignoring hardware differences, overall performance (full table trawls) is

similar. Any minor issues with syntax parsing and bugs were quickly fixed by the LSST DM Team.

As expected, not being able to use subqueries is an unresolved issue, as is not being able to make

proper use of the neighbour tables. It is possible that some of the above queries that use

subqueries could be re-written but we could not readily see a solution. Also one needs to

investigate if deploying views is possible. Some queries need to have tables in a certain order.

Having more than one director table makes loading/distributing the data more complex.

Generally, the Qserv installation is a bit “flaky” queries that were working, stop working and

Qserv has to be re-started. Often the error reporting is not that useful and you have to go

hunting through the logs.

INITIAL ASSESSMENT OF QSERV FOR LSST:UK

30

5 References

[1] Hambly et al., “The WFCAM Science Archive”, 2008, MNRAS

[2] Cross et al., “The VISTA Science Archive”, 2012, A&A

[3] LSST Common Queries Source: https://dev.lsstcorp.org/trac/wiki/db/queries.

