
Copyright LSST:UK Consortium 2017

Technical Report on ImSim

Submission date 8/NOV/19

Version 1.0

Status Published

Author(s) inc.
institutional affiliation James Perry, University of Edinburgh

Reviewer(s) Bob Mann (Edinburgh),

George Beckett (Edinburgh)

Dissemination level

Public

Project Acronym LUSC-A

Project Title UK Involvement in the Large Synoptic Survey Telescope

Document Number LUSC-A-06

TECHNICAL REPORT ON IMSIM

2

Version History
Version Date Comments, Changes, Status Authors, contributors,

reviewers

0.1 15/NOV/17 Initial version James Perry

0.2 12/SEP/19 Added details of OpenMP
parallelisation work

James Perry

0.3 24/OCT/19 Minor changes to address comments
from Bob Mann

James Perry, Bob Mann

1.0 8/NOV/19 Document finalised and published George Beckett

TECHNICAL REPORT ON IMSIM

3

Table of Contents

VERSION HISTORY .. 2

1 EXECUTIVE SUMMARY ... 4

2 INTRODUCTION ... 5

2.1 PURPOSE .. 5
2.2 GLOSSARY OF ACRONYMS .. 5

3 IMSIM PERFORMANCE TESTING .. 6

3.1 BACKGROUND ... 6
3.2 KNL MODES ... 6
3.3 PROFILING .. 7
3.4 INVESTIGATING THE 6-8X SLOWDOWN ... 8
3.5 RUNNING MULTIPLE PROCESSES PER NODE .. 9
3.6 ESTIMATING CPU AND MEMORY REQUIREMENTS ... 10

4 OPENMP PARALLELISATION OF GALSIM .. 11

4.1 PARALLELISING THE CODE .. 11
4.2 PERFORMANCE TESTS .. 12
4.3 FURTHER WORK .. 13

5 REFERENCES .. 14

 Index of Tables

Table 1 Performance of ImSim in different KNL modes ... 7

Table 2 Performance of Python test program on Haswell and KNL CPUs 8

Table 3 Performance of multiple ImSim processes on single KNL node........................ 9

Table 4 CPU and memory requirements of different sized instance catalogues 10

Table 5 Performance of parallelised GalSim code on Haswell 12

Table 6 Performance of parallelised GalSim code on KNL .. 12

TECHNICAL REPORT ON IMSIM

4

1 Executive Summary
This report describes my work on the ImSim image simulation software[1] for DESC,
part of the agreed UK contribution to DESC operations. My first task was to understand
the performance of ImSim on the KNL[3] nodes of the NERSC supercomputer Cori and
to look for ways to improve it. Subsequently, I parallelised parts of GalSim[2] (an open
source galaxy simulation code used internally by ImSim) using OpenMP to improve its
performance on parallel systems.

I investigated all the different execution modes offered by the KNL hardware,
concluding that the choice of mode makes no significant difference to ImSim’s
performance, however the significant start-up cost incurred by switching to a non-
default mode makes the default (quad, flat) mode the best choice.

I profiled ImSim to find out which parts of the code are taking the most time, and also to
see if the profile was significantly different between the Haswell and KNL architectures.
I found the profile to be relatively flat with no significant hotspots, and also to be
relatively similar between Haswell and KNL. The low percentage of time taken by the
GalSim drawImage function was surprising to many at DESC.

I investigated why ImSim was running 6-8x slower on KNL than on Haswell, when
many DESC members were expecting a ratio closer to 2-3x. I tested ImSim, its
backend library GalSim in isolation, and very simple computationally intensive Python
and C programs. The result was a 6-8x slowdown between KNL and Haswell for
everything CPU intensive, though I/O bound codes (such as very short GalSim runs)
showed much less of a difference (1-4x).

I tested running multiple ImSim processes on a single KNL node, in order to make
better use of the resources available. I found that up to 48 processes can be
successfully run simultaneously per node, and that this is a far more efficient use of
resources, even when contention for memory bandwidth is taken into account.

I attempted to roughly predict the CPU time and memory required for an ImSim run
given the size of the instance catalogue used as input. Such a prediction would be
useful for grouping similar processes together when assigning them to nodes. I
discovered that the run time scales roughly linearly with catalogue size and that the
memory usage is more constant but always well below 2GB. This suggests that
assigning catalogues of similar size to the same node, and running up to 48 processes
per node, would be a good strategy.

I introduced OpenMP[4] directives to the Silicon::accumulate function in GalSim,

allowing it to benefit from shared memory parallelism when available. This significantly
improves the performance on both KNL and Haswell systems, up to around 64 threads
on Haswell and around 128 on KNL.

TECHNICAL REPORT ON IMSIM

5

2 Introduction

2.1 Purpose

This document describes my work testing ImSim on the Cori system at NERSC, and
exploring how to make the best use of the resources available for future data
challenges. It also describes the OpenMP parallelisation of the GalSim library used
internally by ImSim. This work was part of the agreed UK contribution to DESC
operations.

2.2 Glossary of Acronyms

DESC - Dark Energy Science Collaboration

LSST – Large Synoptic Survey Telescope

KNL – Knight’s Landing (an Intel Xeon Phi architecture)

MCDRAM – Multi-Channel Dynamic Random Access Memory

NERSC – National Energy Research Scientific Computing Centre

NUMA – Non-Uniform Memory Access

TECHNICAL REPORT ON IMSIM

6

3 ImSim Performance Testing

3.1 Background

For their Data Challenge work (the data challenges are large scale data processing
exercises intended to simulate the processing of LSST data, in order to understand
how best to prepare resources and software for the telescope coming online), DESC
have been allocated time on the Cori system at NERSC. Most of this time is on the
KNL partition of the machine, however Data Challenge 1 highlighted some problems
with running ImSim on the KNL:

 ImSim is single threaded, and in order to get reasonable performance from the
KNL processors, many threads are required.

 Even when only a single KNL core is used, NERSC users are still charged for
all of the cores during the time of the run. Since there are 68 cores per KNL
chip, this is not an efficient use of the time allocated.

 ImSim appears to run approximately 6-8x slower on KNL than it does on the
Haswell partition of Cori. This was unexpected as many members of DESC
were expecting a slowdown closer to only 2-3x.

My task was to measure and understand the performance of ImSim on Cori, investigate
why it runs so much slower on KNL than on Haswell, and find out how to make more
efficient use of the KNL hardware.

Most of my testing was carried out using an instance catalogue (an input file for ImSim,
consisting mostly of a list of objects) from the Data Challenge 1 data set. Specifically,
instcat_40336_R_2_3_S_2_2.txt was chosen because of its relatively small size (4MB)
– it can be processed in about an hour by ImSim running on KNL, whereas running the
larger instance catalogues would have been prohibitively slow. Unless otherwise noted
the runs referred to in this document used this instance catalogue.

I used the central installation of ImSim which was set up by Heather Kelly and
supported both KNL and Haswell architectures.

3.2 KNL Modes

The KNL hardware can be configured into several different execution modes. These
relate to the configuration of the NUMA domains, and whether caching is enabled or
not. Specifically, the NUMA modes are as follows:

 quad – the KNL chip is divided into four virtual quadrants, but appears to the
OS as a single NUMA domain

 snc2 – the chip is analogous to a 2 socket Xeon

 snc4 – the chip is analogous to a 4 socket Xeon

The cache modes available are:

 cache – the fast MCDRAM is used as a last-level cache

 flat – the fast MCDRAM is used as normal addressable memory

The modes can be selected using parameters in Slurm job scripts.

TECHNICAL REPORT ON IMSIM

7

In order to get the best from the different execution modes, code changes are required.
Unfortunately there was insufficient effort available for this, so I was limited to testing
the standard ImSim code on each different mode to see which mode was the best fit for
it. The results were as follows:

KNL Mode Run Time

quad, cache 1:03:15

quad, flat 1:02:16

snc2, cache 1:02:48

snc2, flat 1:02:32

snc4, cache 1:03:52

snc4, flat 1:03:01

Table 1 Performance of ImSim in different KNL modes

As seen from the table, the actual run time is almost the same regardless of the mode
selected. However, there is a delay of approximately 30 minutes before the code runs
when selecting any mode other than the default (quad, cache), because the node
needs to be rebooted. Therefore, the default mode is the most suitable.

3.3 Profiling

In order to better understand the performance of the code, I profiled it using the
standard Python cProfile tool. Both KNL and Haswell runs were profiled so that the
profiles could be compared across different hardware platforms. The run took 4,245s
on KNL and 559s (7.6x faster) on Haswell. The profile revealed the following:

 The profile is fairly "flat". There is no single hotspot that takes the vast majority
of the time as there is in many codes. Instead there are numerous functions that
take moderate amounts of time.

 The function that takes the most time on both processors is setupCCMab from
LSST photUtils. This accounts for 737s (17%) on KNL and 107s (19%) on
Haswell.

 The function that takes the second most time on KNL is _transformSingleSys
(from afw), accounting for 279s (7%) of the run time.

 The function that takes the second most time on Haswell is drawImage (from
galsim), accounting for 32s (6%) of the run time.

 The relative time taken by the various functions is similar between both
processors, but not identical.

 Looking at a selection of functions, most appear to be 6-12x slower on KNL
than on Haswell. However, I/O related functions (such as posix.stat) are
generally only 3-4x slower. These functions are probably not CPU bound.

The lack of a single intensive hotspot makes optimisation of the code more difficult, and
the similarity of the KNL and Haswell profiles gives little clue as to the reason for the 6-
8x slowdown. Several people expressed surprise that GalSim’s drawImage function
only accounted for 6% of the run time (70% has been observed on other machines). To
investigate whether this was due to start-up overheads when using a relatively small
input file, I profiled with a larger 15MB instance catalogue

TECHNICAL REPORT ON IMSIM

8

(instcat_40336_R_1_2_S_0_0.txt). In this case, drawImage accounted for 12% of the
total run time, twice as much as before but still less than expected.

3.4 Investigating the 6-8x slowdown

After analysing the profile of ImSim on Cori, I suspected that the 6-8x slowdown
observed between KNL and Haswell might simply be due to Python being slow on
KNL, rather than anything specific to ImSim. In order to test this I wrote a very simple
but compute-intensive Python script:

sum=0
i=0
while i < 1000000000:
 sum = sum + i
 i = i + 1
print("sum=",sum)

I then ran this script on both KNL and Haswell nodes on Cori, using the default Python
2.7 environment, the Python 3 LSST environment used for my other ImSim tests, and
finally the environment given by running module load python/3.6-anaconda-4.4. The
results are below:

Python
Environment

KNL runtime Haswell runtime Performance
difference

Default Python 2.7 602s 101s 6x

LSST stack 917s 155s 5.9x

Anaconda 844s 154s 5.5x

Table 2 Performance of Python test program on Haswell and KNL CPUs

Since all three versions of Python showed a significant slowdown between Haswell and
KNL even for a trivial test program, I decided to also test a trivial compute intensive C
program:

#include <stdio.h>

int main(int argc, char *argv[])
{
 long sum = 0, i;
 for (i = 0; i < 100000000000; i++) {
 sum += i;
 }
 printf("sum=%d\n", sum);
 return 0;
}

This program, compiled with gcc using the –O3 switch, showed an even more marked
difference between Haswell and KNL: running on KNL took 7.2x longer. This suggested
to me that 6-8x is simply the baseline performance difference between Haswell and
KNL for single core, CPU intensive codes that have not been optimised for KNL.

It was also suggested that I investigate whether a similar slowdown occurs when
running GalSim directly. (GalSim is used as a backend library by ImSim). Running the
samples that came with GalSim resulted in only a 1x-4x performance difference

TECHNICAL REPORT ON IMSIM

9

between KNL and Haswell. However, these are very small examples and therefore
likely to be dominated by I/O and start-up overhead. Running a larger, more realistic
example resulted in a 6.6x slowdown between Haswell and KNL, much more similar to
that seen with ImSim.

3.5 Running multiple processes per node

It was clear from the outset that making use of more than one core per KNL node was
going to be crucial in order to get reasonable speed and efficiency for the ImSim runs.
Unfortunately ImSim was strictly a single core program with no provision for
parallelism, and there was insufficient effort available to embark on parallelising the
code.

However, I did investigate the possibility of running multiple independent ImSim
processes at once on the same KNL node. Since the data challenges require the same
processing steps to be run on large numbers of different inputs, this could be a feasible
way of exploiting more of the KNL’s compute cores, both to reduce overall runtimes
and to make better use of the resources allocated.

I experimented with running multiple ImSim processes simultaneously on a single KNL
node. All processes were running the same instance catalogue (the one used in most
of my other tests) so that timings could be meaningfully compared with the single
process runs. A very simple system was used for this: all processes were launched in
the background from a single Slurm script and the Bash wait command was used to
wait for them all to complete.

Initially I was only able to run up to 15 processes simultaneously, before encountering
a threading related error message. It turned out that the OpenBLAS library used
internally by ImSim was parallelised with Pthreads. The number of threads used by
OpenBLAS can be controlled by the OPENBLAS_NUM_THREADS environment variable. After
experimenting with this it became clear that there was no benefit at all to ImSim in
using multiple threads, in fact the threads were actually interfering with running multiple
processes at once, so I set the variable to 1 for the remainder of my tests.

I was then able to run up to 48 processes simultaneously. The run times are given
below:

Number of Processes Total Runtime

1 1:03:15

2 1:04:42

4 1:05:32

8 1:08:44

16 1:09:43

32 1:16:38

48 1:24:24

Table 3 Performance of multiple ImSim processes on single KNL node

As can be seen, running 2 or 4 ImSim processes simultaneously only increases the
runtime very slightly over that of a single process. When the number of processes is

TECHNICAL REPORT ON IMSIM

10

increased further, the runtime increases, probably due to memory contention between
the cores. However, even with 48 processes the runtime has still increased by less
than half of the single process runtime, so the efficiency is still far better than when
running a single process on the node.

3.6 Estimating CPU and memory requirements

If the proposed solution of allocating multiple ImSim processes to a single KNL node is
to be adopted, it would be advantageous to be able to roughly estimate the CPU and
memory requirements of a given instance catalogue in advance, for two reasons:

1. To ensure that the node has enough memory to run all of the processes
assigned to it.

2. To group together runs that are likely to take roughly the same time to
complete, which is likely to be desirable for workload management.

In order to determine whether it was possible to estimate the CPU and memory
resources required from the instance catalogue size, I ran ImSim with several instance
catalogues of various sizes and recorded the time taken and high water mark memory
usage.

Instance
Catalogue

Size (bytes) Time taken Maximum memory
used (GB)

R_1_0_S_0_2 2133703 5:54 1.22

R_2_3_S_2_2 3924779 7:59 1.29

R_1_1_S_0_0 7325162 14:19 1.53

R_1_1_S_0_1 11840568 23:03 1.56

R_1_2_S_0_0 15146110 29:02 1.64

R_0_1_S_0_1 24371410 49:09 1.59

Table 4 CPU and memory requirements of different sized instance catalogues

The results show that the time taken scales roughly linearly with catalogue size
(although this scaling is not so strong for the smallest instance catalogues, probably
due to start-up and I/O overhead), suggesting that grouping together catalogues of
similar sizes would be a sensible strategy.

The maximum memory usage also tends to increase with catalogue size, but much
more slowly, and the highest usage observed with any of the catalogues was only
1.64GB. This suggests that running 48 processes per node should be safe, as each
node has 96GB of memory.

As well as testing this experimentally, I also talked to some of ImSim’s developers to
‘sanity check’ this result. Their response was that this is to be expected and is likely to
remain true for the instance catalogues used in DC2.

TECHNICAL REPORT ON IMSIM

11

4 OpenMP parallelisation of GalSim
Although the many cores provided by KNL processors can be exploited to some extent
by running multiple ImSim processes, it is also highly desirable to be able to run
multiple threads per process within the critical sections of the code. This provides for a
finer grained, lower overhead parallelism, since all memory is shared between the
various threads.

Within ImSim, the actual drawing is performed by GalSim, an open source galaxy
simulation toolkit. GalSim is mostly written in C++ with a thin Python wrapper around it.

For typical ImSim workloads, the critical function within GalSim is the accumulate

method of the Silicon class. This method simulates a number of photons being fired

at a silicon image sensor. Since the same operation is repeated multiple times over a
potentially large number of photons, this appeared to be a good candidate for
parallelisation.

4.1 Parallelising the code

Whilst the main operation of adding the photons to the image was relatively
straightforward to parallelise, there were a few subtleties that had to be addressed in
order for the parallelisation to work satisfactorily:

 A subroutine called updatePixelDistortions took up a significant portion

of the run time, so it also had to be parallelised. This function involves changing
the positions of the pixel boundaries very slightly based on the photons that had
previously hit each pixel, mimicking the behaviour of real silicon image sensors.

 Some operations (for example, adding the updated flux to the existing image)
had to be made atomic to avoid the danger of race conditions if multiple threads
attempt to update the same value simultaneously. An alternative method of
having a separate delta image for each thread and merging them at the end of
the pixel loop was also tested, but the atomic version was found to be
significantly faster.

 The updatePixelDistortions function is called whenever the total flux

added to the image since the last call reaches a certain threshold. In the original
serial version of the code, this was done within the main photon loop, however
in the parallel version this was not a suitable place for it, since that would result
in it being called from every thread instead of just once. Instead, the loop
condition was changed so that the inner (parallelised) loop would exit when a

call to updatePixelDistortions was required. To ensure that exactly the

same number of photons would be processed before each call as in the serial
version, the parallel version pre-calculates how many photons are required to
take the added flux over the threshold and uses this number as the inner
photon loop bound. Fortunately the flux value for each photon is readily
available in the photon structure, so this is a fairly lightweight operation.

 Silicon::accumulate makes extensive use of random number generators,

so care has to be taken to avoid a different random sequence (and hence a
different resulting image) being produced when running in parallel. To maintain
reproducibility, the parallel code generates all the required random numbers in
an array before entering the parallel loop. A slight modification to the logic was
required because one of the random number generation calls in the original
code was conditional, therefore the total number of random numbers required to
process each photon could not be predicted in advance. To make this
predictable, the parallel code instead generates this number for every photon,
whether it is required or not. As a result, although the parallel code will produce
the same result regardless of the number of threads in use, it does not produce
an identical result to the old serial code.

TECHNICAL REPORT ON IMSIM

12

More details of the parallelisation process are given in the relevant GitHub issue
(https://github.com/GalSim-developers/GalSim/issues/1008).

4.2 Performance tests

During development, the parallel version of GalSim was tested using one of the

existing GalSim test scripts, namely test_sensor.py. This was useful for verifying

that the code was still producing correct results and that performance was improved,
but it uses a relatively small problem size, resulting in the performance improvement
tailing off as the number of threads increases. A new script called

test_silicon_accumulate.py was developed to allow more realistic problem

sizes to be tested. This uses a 1000x1000 pixel image size and fires 10,000,000
photons at random locations throughout the image.

Number of Threads Total Runtime

1 341.95

2 189.04

4 99.63

8 56.86

16 34.85

32 26.4

64 24.79

Table 5 Performance of parallelised GalSim code on Haswell

Number of Threads Total Runtime

1 3017.62

2 1526.92

4 777.83

8 403.57

16 215.28

32 119.35

64 71.25

128 52.49

256 49.8

Table 6 Performance of parallelised GalSim code on KNL

Performance of this test problem with various thread counts is shown in Table 5 and
Table 6 for Haswell and KNL respectively. It can be observed that in both cases the
code scales well up to around 8 threads, and increasing the thread count continues to

https://github.com/GalSim-developers/GalSim/issues/1008

TECHNICAL REPORT ON IMSIM

13

provide significant benefits up to 32 threads on Haswell and 128 on KNL. The
performance eventually plateaus at around 13x faster than the serial code on Haswell,
and around 60x faster on KNL. This is consistent with the number of cores available on
these processors. The plateauing is likely due to contention for shared resources (such
as memory) becoming problematic at higher thread counts.

4.3 Further Work

At the time of writing, the parallelised code has only been tested in isolation using pure
GalSim examples. It should also be tested as part of larger ImSim runs. In particular,
since parallelism can now be exploited both at the process level in ImSim and at the
thread level in GalSim, experiments should be done to find out the optimal way to
distribute work among the cores available.

TECHNICAL REPORT ON IMSIM

14

5 References
[1] https://github.com/LSSTDESC/imSim
[2] https://www.lsst.org/scientists/simulations/galsim
[3] Sodani, Avinash, et al. "Knights landing: Second-generation intel xeon phi product." Ieee

micro 36.2 (2016): 34-46.
[4] Dagum, Leonardo, and Ramesh Menon. "OpenMP: An industry-standard API for shared-

memory programming." Computing in Science & Engineering 1 (1998): 46-55.

https://github.com/LSSTDESC/imSim
https://www.lsst.org/scientists/simulations/galsim

